

Vietnam Journal of Catalysis and Adsorption Tạp chí xúc tác và hấp phụ Việt Nam

http://chemeng.hust.edu.vn/jca/

Tính chất và hoạt tính của xúc tác Ni/CeO₂ biến tính Cr_2O_3 trong reforming CH₄ bằng CO₂ và hơi nước

Characteristics and activity of Ni/CeO₂ catalyst modified by Cr_2O_3 in combined steam and CO_2 reforming of CH_4

Phan Hồng Phương^{1,2}, Nguyễn Phụng Anh³, Trần Anh Huy^{1,2}, Nguyễn Trí^{3,4}, Lưu Cẩm Lộc^{1,2,3,4*}

¹Trường Đại học Bách Khoa (VNU-HCM), 268 Lý Thường Kiệt, Quận 10, TP.HCM

² Đại học Quốc gia TP.HCM, Phường Linh Trung, Quận Thủ Đức, TP.HCM

³Viện Công nghệ Hóa học (VAST), 01 Mạc Đĩnh Chi, Quận 1, TP.HCM

⁴Học viện Khoa học và Công nghệ (VAST), 18 Hoàng Quốc Việt, Quận Cầu Giấy, Hà Nội

* Email: lcloc@ict.vast.vn

Hội thảo khoa học "Vật liệu tiên tiến ứng dụng trong xúc tác Hấp phụ và năng lượng" – Huế 2020	
ARTICLE INFO	ABSTRACT
Received: 27/8/2020 Accepted: 20/12/2020	A series of 10%wtNiO/CeO ₂ -nanorod catalyst without and with Cr ₂ O ₃ additive was prepared by simultaneous impregnation method. Several techniques, including N ₂ physisorption measurements, X-ray powder diffraction (XRD), temperature-programmed reduction using H ₂ (H ₂ -TPR), CO ₂ temperature-programmed desorption (CO ₂ -TPD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used to investigate catalysts' physico-chemical properties. The activity of the catalysts in combined steam and CO ₂ reforming of CH ₄ (BRM) was investigated at temperature range of 550–800 °C. The results showed that 10%NiO0.1%Cr ₂ O ₃ /CeO ₂ catalyst had the best catalytic performance due to a better reducibility and basicity. At 700 °C and CH ₄ :CO ₂ :H ₂ O molar ratio in feed stream of 3:1.2:2.4, both conversion of CH ₄ and CO ₂ on this catalyst reached 98.5%
Keywords:	
CeO ₂ nanorods, Nickel catalyst, Cr ₂ O ₃ additive, combined steam and CO ₂ reforming of CH ₄	

Giới thiệu chung

Xúc tác đóng vai trò quan trọng trong phản ứng reforming CH_4 bằng CO_2 và hơi nước. Bên cạnh việc giúp nâng cao độ chuyển hóa CH_4 , CO_2 , hạn chế phản ứng phụ, việc phát triển hệ xúc tác phù hợp được kỳ vọng có thể giảm được nhiệt độ phản ứng. Kim loại Ni đã cho thấy hoạt tính tốt khi được dùng làm pha hoạt động cho phản ứng reforming CH_4 . Tuy nhiên, quá trình tạo cốc và thiêu kết ở nhiệt độ phản ứng cao diễn ra nghiêm trọng, dẫn đến giảm hoạt tính xúc tác. Nhiều biện pháp đã được sử dụng nhằm hạn chế nhược điểm này. Trong đó,

việc sử dụng các phụ gia để tạo các hệ xúc tác lưỡng tâm kim loại được quan tâm nghiên cứu với kỳ vọng khắc phục những khuyết điểm của từng kim loại thành phần.

Nhiều phụ gia đã được sử dụng cho hệ xúc tác Ni/chất mang. Hệ xúc tác Co-Ni/TiO₂ đã được nghiên cứu cho phản ứng reforming khô CH₄ với mục đích xác định tỉ lệ Co/Ni thích hợp để xúc tác có hoạt tính và độ ổn định tốt nhất [1]. So với xúc tác Ni/TiO₂ và Co/TiO₂, Co-Ni/TiO₂ dễ khử hơn với nhiệt độ khử thấp hơn. Xúc tác 10%CoO_x/TiO₂ cho thấy hoạt tính thấp và giảm hoạt tính nhanh trong phản ứng, thêm 10% NiO vào xúc tác này đã

khắc phục được các nhược điểm trên, do ngăn chặn được sự oxi hóa Co thành oxit kim loại.

Việc bổ sung Pt vào xúc tác Ni/Al₂O₃ đã hạn chế được những khuyết điểm của xúc tác này trong phản ứng bireforming (BRM). Phụ gia Pt làm giảm mạnh kích thước hạt Ni. Nhờ đó, tăng phân tán Ni và giảm tạo cốc trong phản ứng reforming CH₄. Bên cạnh đó, Pt giúp xúc tác Ni/Al₂O₃ dễ khử hơn, thể hiện qua nhiệt độ khử cực đại của các đỉnh khử giảm và diện tích của vùng khử ở nhiệt độ thấp cao hơn [2].

F. Menegazzo [3] cho thấy xúc tác Ni-Pd/ZrO₂ vượt trội hơn so với xúc tác Ni/ZrO₂. Xúc tác lưỡng kim này có khả năng khử cao hơn so với xúc tác đơn kim loại Ni. Ngoài ra, xúc tác Ni-Pd/ZrO₂ có khả năng hạn chế hình thành cốc đáng kể so với xúc tác Ni/ZrO₂.

Trong nghiên cứu trước đây của chúng tôi, xúc tác 10%NiO mang trên CeO₂ dạng thanh (Ni/Ce) có hoạt tính cao và độ bền tốt trong phản ứng reforming CH₄ bằng CO₂ và hơi nước (BRM). Việc biến tính xúc tác này bằng kim loại thứ hai được kỳ vọng nâng cao hơn nữa hiệu quả trong phản ứng. Là oxit kim loại có hoạt tính oxi hóa và có giá thành rẻ trong nghiên cứu này Cr_2O_3 được chọn làm phụ gia tăng hoạt tính oxi hóa CH₄ cho xúc tác Ni/Ce. Thông qua việc đánh giá tính chất lý hóa và khảo sát hoạt tính các hệ xúc tác biến tính, hàm lượng Cr_2O_3 phù hợp cho xúc tác 10%NiO/CeO₂ sẽ được đề xuất.

Thực nghiệm và phương pháp nghiên cứu

Chất mang CeO₂ có kích thước nano được điều chế theo phương pháp thủy nhiệt [4]. Xúc tác 10%kl NiO mang trên CeO₂ được điều chế bằng phương pháp tẩm ướt dung dịch muối Ni(NO₃)₂ lên chất mang CeO₂, theo quy trình trong công bố trước đây của nhóm nghiên cứu [4]. Xúc tác biến tính được điều chế theo phương pháp tẩm đồng thời dung dịch muối Ni(NO₃)₂ và Cr(NO₃)₃ lên chất mang CeO₂. Các xúc tác được kí hiệu như sau. Xúc tác 10 %kl NiO mang trên CeO₂ thanh nano không biến tính được ký hiệu Ni/Ce; xúc tác Ni/Ce biến tính bởi 0,1; 0,3 và 0,5 %kl Cr₂O₃ lần lượt được ký hiệu như sau: Ni0,1Cr/Ce; Ni0,3Cr/Ce; Ni0,5Cr/Ce.

Hoạt tính các xúc tác trong phản ứng bi-reforming $\mathsf{CH}_4:$

$$3CH_4 + CO_2 + 2H_2O \rightleftharpoons 4CO + 8H_2,$$

 $\Delta H_{298} = +220 \text{ kJ.mol}^{-1}$ (1)

được khảo sát ở vùng nhiệt độ 550–800 °C trên sơ đồ dòng vi lượng, lượng xúc tác sử dụng là 0,2 g, lưu lượng dòng tổng 6 L/h, tỷ lệ mol $CH_4:CO_2:H_2O$ trong dòng nhập liệu là 3:1,2:2,4.

Các xúc tác sau khi điều chế được khảo sát các tính chất lý-hóa như: thành phần pha (XRD), hình thái bề mặt (SEM và TEM), diện tích bề mặt riêng và đường kính lỗ xốp (BET) bằng phương pháp hấp phụ đẳng nhiệt N_2 ở 77 K, khử theo chương trình nhiệt độ (H₂-TPR) bằng dòng 10% H₂/N₂ từ nhiệt độ phòng đến 900 °C với tốc độ gia nhiệt 10 °C/phút và hấp phụ - giải hấp CO₂ theo chương trình nhiệt độ (CO₂-TPD).

Kết quả và thảo luận

Hình 1: Ảnh SEM của các mẫu xúc tác Ni/Ce biến tính với hàm lượng Cr_2O_3 khác nhau

a) Ni/Ce

c) Ni0,3Cr/Ce

b) Ni0,1Cr/Ce

Hình 2: Ảnh TEM của các mẫu xúc tác Ni/Ce biến tính Cr_2O_3 với hàm lượng khác nhau

https://doi.org/10.51316/jca.2021.017 105

Ánh SEM (Hình 1) và ảnh TEM (hình 2) cho thấy các xúc tác tồn tại chủ yếu ở dạng thanh và một phần nhỏ ở dạng hạt hình cầu. Các xúc tác biến tính Cr (hình 1.b, c, d) vẫn giữ được dạng hình thanh của thanh CeO₂, nhưng có kích thước thanh xúc tác lớn hơn so với xúc tác không biến tính Ni/Ce (hình 1a). Xúc tác Ni/Ce có đường kính khoảng 20-40 nm, trong khi xúc tác biến tính Cr các thanh có đường kính 70–100 nm với chiều dài khoảng 150– 200 nm và các hạt hình cầu đường kính 20–100 nm. Khi tăng hàm lượng phụ gia Cr, các hạt xúc tác có xu hướng phân tán rời rạc hơn đồng thời mật độ hạt hình cầu cao hơn. Kết quả TEM (hình 2) cho thấy ở tất cả các mẫu, các hạt NiO với kích thước 10–20 nm, tương đối đồng đều giữa các mẫu có biến tính Cr₂O₃ và không có biến tính [5]. Ảnh TEM cũng cho thấy các hạt NiO phân tán rời rạc trên bề mặt và trong lỗ xốp của chất mạng CeO₂ [6].

Khi thêm Cr_2O_3 vào xúc tác Ni/Ce, đường kích lỗ xốp của xúc tác có xu hướng tăng, dẫn tới diện tích bề mặt riêng giảm mạnh từ 24,7 m²/g xuống 2,9–7,7 m²/g và thể tích lỗ xốp từ 0,018 m³/g xuống 0,002 – 0,005 cm³/g (Bảng 1). Kết quả này phù hợp với ảnh SEM của các xúc tác. Mẫu Ni0,3Cr/Ce có đường kích lỗ xốp lớn nhất, nên có diện tích bề mặt riêng và thể tích lỗ xốp thấp nhất. Đường kính lỗ xốp của các xúc tác phù hợp cho sự khuếch tán của CH₄ và CO₂ do đường kính phân tử của CH₄ và CO₂ tương ứng là 3,8 và 3,3 Å [7].

Bảng 1: Diện tích bề mặt riêng (S_{BET}), đường kính (d_{pore}) và thể tích (V_{pore}) lỗ xốp của các xúc tác Ni/Ce biến tính Cr₂O₃ với hàm lượng khác nhau

Hình 3: Phổ XRD của các mẫu xúc tác Ni/Ce biến tính Cr_2O_3 với hàm lượng khác nhau

Trên giản đồ XRD (Hình 3) của các xúc tác đều xuất hiện các đỉnh đặc trưng cho CeO₂ tại các vị trí 2 θ = 28,5; 33,1; 47,5; 56,3; 95,1; 69,4; 76,7; 79,1 [8]. Bên cạnh đó, các đỉnh đặc trưng của NiO với cường độ yếu đều xuất hiện trong các mẫu xúc tác ở các vị trí 2 θ = 37; 43,5; 62,5; chứng tỏ NiO phân tán khá cao trên chất mang [9]. Sự phân tán cao của NiO trên CeO₂ được giải thích do sự tương tác mạnh của Ni²⁺ với chất mang CeO₂ tạo thành các ion Ce³⁺ and oxygen vacancies làm phân tán các hạt NiO tốt hơn trên bề mặt xúc tác [10].

Hơn nữa không quan sát thấy các tín hiệu đặc trưng của Cr_2O_3 trong các xúc tác biến tính. Điều này có thể do hàm lượng Cr_2O_3 trong xúc tác thấp và/hoặc Cr_2O_3 phân tán cao trên chất mang. Khi thay đổi hàm lượng Cr_2O_3 , vị trí và cường độ các đỉnh không thay đổi rõ rệt, chứng tỏ Cr_2O_3 không làm thay đổi thành phần pha của xúc tác.

Dựa vào công thức Scherrer xác định được kích thước tinh thể trung bình của CeO_2 tại vị trí có cường độ tín hiệu cao nhất ($2\theta = 28,5^\circ$) lần lượt là 29,27; 26,44 và 27,32 Å, tương ứng với các mẫu Ni0,1Cr/Ce; Ni0,3Cr/Ce và Ni0,5Cr/Ce. Kích thước tinh thể CeO_2 không chênh lệch nhiều giữa các mẫu xúc tác biến tính NiCr/Ce nhưng lớn hơn so với kích thước của mẫu không biến tính Ni/Ce (19,5 Å). Do đó kích thước hạt CeO_2 tăng khi thêm phụ gia Cr như đã thấy trong ảnh SEM và TEM.

Hình 4: Giản đồ H₂-TPR của các mẫu xúc tác Ni/Ce biến tính Cr₂O₃ với hàm lượng khác nhau

Theo Xianjun Du [11] đối với xúc tác NiO/CeO₂ có hai vùng khử của NiO, vùng thứ nhất nằm trong khoảng nhiệt độ từ 265 đến 285 °C, đặc trưng cho sự khử của NiO tương tác yếu với CeO₂, vùng thứ hai nằm trong khoảng từ 360 đến 380 °C tương ứng với sự khử của NiO tương tác mạnh với CeO₂. Do vậy, đỉnh khử xuất hiện vùng khử ở 320–550 °C của các xúc tác Ni/Ce và https://doi.org/10.51316/jca.2021.017

NiCe/Ce trên giản đồ H₂-TPR (hình 4) đặc trưng cho quá trình khử NiO tương tác mạnh với chất mang. So với mẫu không biến tính Ni/Ce, trên mẫu biến tính Cr₂O₃ các đỉnh khử này dịch chuyển sang vùng nhiệt độ cao hơn, chứng tỏ NiO tương tác mạnh hơn với chất mang khi có mặt Cr₂O₃. Điều này giúp hạn chế hiện tượng thiêu kết các tâm Ni khi phản ứng ở nhiệt độ cao. Bên cạnh đó, giản đồ H₂-TPR của xúc tác Ni/Ce xuất hiện đỉnh khử ở 730–900 °C, đặc trưng cho sự khử CeO₂ [12]. Ở các mẫu biến tính Cr₂O₃ đỉnh khử CeO₂ dịch chuyển về vùng nhiệt độ thấp hơn, cho thấy Cr₂O₃ giúp CeO₂ dễ khử hơn. Điều này góp phần tăng cường sự khử CeO₂ ở bề mặt từ Ce⁴⁺ thành Ce³⁺ và giải phóng oxi, tăng khí hóa cốc hình thành trên bề mặt xúc tác theo phản ứng sau:

Hình 5: Giản đồ CO₂-TPD của các mẫu xúc tác Ni/Ce và Ni0,1Cr/Ce

Trên giản đồ CO_2 -TPD của các xúc tác không biến tính và biến tính bởi Cr_2O_3 (hình 5) đều xuất hiện đỉnh giải hấp phụ CO_2 ở vùng nhiệt độ từ 70 đến 170 °C, tương ứng sự hấp phụ CO_2 trên các tâm bazơ yếu. Tuy nhiên, khi có mặt 0,1% Cr_2O_3 trong xúc tác, mật độ của tâm bazơ trong xúc tác tăng đáng kể thể hiện qua diện tích đỉnh giải hấp lớn. Các kết quả nghiên cứu trước đây cho thấy việc biến tính xúc tác bằng kim loại chuyển tiếp làm tăng khả năng hấp phụ CO_2 mặc dù làm giảm diện tích bề mặt của xúc tác [13].

Hình 6 cho thấy khi tăng nhiệt độ phản ứng từ 500 °C lên 700 °C độ chuyển hóa của cả CH_4 và CO_2 tăng nhanh do BRM (1) là phản ứng thu nhiệt mạnh, sau đó tăng chận khi tiếp tục tăng nhiệt độ lên đến 800 °C. Ở mọi nhiệt độ các xúc tác biến tính Cr đều thể hiện hoạt độ cao hơn xúc tác không biến tính. Điều này được giải thích là do Cr_2O_3 làm tăng tính khử của NiO và CeO_2 và tăng hấp phụ CO_2 như đã phân tích ở trên. Đặc biệt, xúc tác biến tính có độ chuyển hóa CO_2 vượt trội so với xúc tác không biến tính Ni/Ce do có khả

năng hấp phụ CO_2 cao như quan sát thấy trên giản đồ CO_2 -TPD (hình 5). Trong các mẫu biến tính, Ni0,1Cr/Ce là xúc tác có hoạt tính cao nhất với độ chuyển hóa của cả CH_4 và CO_2 đạt 98,5 % ở 700 °C và không tăng khi tăng tiếp nhiệt độ phản ứng. Trong khi đó mẫu Ni0,3Cr/Ce có hoạt tính thấp nhất do bề mặt riêng và diện tích các peak khử nhỏ nhất. Mẫu Ni0,5Cr/Ce có độ chuyển hóa CH_4 xấp xỉ mẫu Ni0,3Cr/Ce, nhưng độ chuyển hóa CO_2 cao hơn, như quan sát thấy trên hình 6. Kết quả cho thấy, biến tính xúc tác Ni/Ce bằng Cr_2O_3 với một lượng thích hợp tuy làm giảm diện tích bề mặt nhưng lại làm tăng hoạt tính của xúc tác. Kết quả tương tự cũng nhận được khi xúc tác nickel được biến tính bằng kim loại chuyển tiếp khác [14].

Hình 6: Độ chuyển hóa của CH₄ (a) và CO₂ (b) theo nhiệt độ của các xúc tác Ni/CeO₂ biến tính Cr₂O₃ với hàm lượng khác nhau

So sánh độ chuyển hóa của CH₄ và CO₂ cho thấy, trong vùng nhiệt độ thấp (dưới 600 °C) độ chuyển hóa CH₄ cao hơn độ chuyển hóa CO₂. Tuy nhiên, tăng nhiệt độ phản ứng độ chuyển hóa CO₂ tăng nhanh hơn và ở 800 °C độ chuyển hóa của CO₂ https://doi.org/10.51316/jca.2021.017 cao hơn so với CH4 đôi chút. Điều này có thể là do ở nhiệt độ thấp các phản ứng tỏa nhiệt như phản ứng Water Gas Shift (WGS) (3) sinh thêm CO2 chiếm ưu thế [15].

Ở nhiệt độ cao (800 °C), ngược lại, phản ứng chuyển hóa khí – nước ngược (RWGS) xảy ra thuận lợi làm tăng chuyển hóa CO2.

 $CO + H_2O \rightleftharpoons CO_2 + H_2, \Delta H298 = \cdot 41,1 \text{ kJ.mol} \cdot 1 \quad (3)$

Kết luận

Thêm phụ gia Cr_2O_3 dẫn đến giảm diện tích bề mặt riêng và thể tích lỗ xốp của xúc tác NiO/CeO₂ nhưng làm tăng mức độ khử của NiO, dẫn tới tăng độ chuyển hóa CH₄ trong phản ứng reforming. Bên cạnh đó, thêm phụ gia Cr_2O_3 lượng tâm bazơ yếu tăng mạnh và hấp phụ CO₂ trên xúc tác NiCr/Ce tăng. Kết quả là, độ chuyển hóa CO₂ trên các xúc tác biến tính Cr₂O₃ cao hơn xúc tác không biến tính. Trong các xúc tác biến tính, Ni0,1Cr/Ce thể hiện độ chuyển hóa CH₄ và CO₂ tốt nhất do có diện tích bề mặt riêng, thể tích lỗ xốp, mức độ khử NiO tốt hơn và mật độ tâm bazơ cao.

Lời cảm ơn

Nghiên cứu này được tài trợ bởi Đại học Quốc gia TP. Hồ Chí Minh (VNU-HCM) trong khuôn khổ Đề tài mã số C2019-20-21.

Tài liệu tham khảo

- K. Takanabe, K. Nagaoka, K. Nariai, and K.Aika, J.

 Catal.,
 232(2005)
 268-275.

 https://doi.org/10.1016/j.jcat.2005.03.011
- M. García-Diéguez, I. S. Pieta, M. C. Herrera, M. A. Larrubia, and L. J. Alemany, Appl. Catal. A: General 377(2010) 191-199. https://doi.org/10.1016/j.apcata.2010.01.038

- F. Menegazzo, M. Signoretto, F. Pinna, P. Canton, and N. Pernicone, Appl. Catal. A: General 439-440(2012) 80-87. https://doi.org/10.1016/j.apcata.2012.06.041
- L. C. Loc, P. H. Phuong, D. Putthea, N. Tri, N. T. T. Van, and H. T. Cuong, Inter. J. Nanotechnol., 15(2018) 968-982. https://doi.org/10.1504/IJNT.2018.099935
- A. Vita, C. Italiano, M. A. Ashraf, L. Pino, and S. Specchia, Inter. J. Hydro. Ener. 43(2018) 11731-11744. https://doi.org/10.1016/j.ijhydene.2017.11.140
- W. Shan, M. Luo, P. Ying, W. Shen, and C. Li, Appl. Catal. A: General 246(2003) 1-9. https://doi.org/10.1016/S0926-860X(02)00659-2
- S. Li, J. L. Falconer, and R. D. Noble, 18 (2006), 2601-2603. https://doi.org/10.1002/adma.200601147
- P. X. Huang, F. Wu, B. L. Zhu, X. P. Gao, H. Y. Zhu, T. Y. Yan, W. P. Huang, S. H. Wu, and D. Y. Song, J. Phys. Chem. B, 109(2005) 19169-19174. https://doi.org/10.1021/jp052978u
- 9. N. Wang, W. Qian, W. Chu, and F. Wei, Catal. Sci. Technol. 6(2016) 3594-3605. https://doi.org/10.1039/C5CY01790D
- B. Xu, Q. Zhang, S. Yuan, M. Zhang, and T. Ohno, Chem. Eng. J. 260(2015) 126-132. https://doi.org/10.1016/j.cej.2014.09.001
- X. Du, D. Zhang, L. Shi, R. Gao, and J. Zhang, J. Phys. Chem. C 116(2012) 10009-10016. https://doi.org/10.1021/jp300543r
- R. Peng, X. Sun, S. Li, L. Chen, M. Fu, J. Wu, and D. Ye, Chem. Eng. J. 306(2016) 1234-1246. https://doi.org/10.1016/j.cej.2016.08.056
- S. H. Seok, S. H. Choi, E. D. Park, S. H. Han, and J. S. Lee, J. Catal. 209(2002) 6-15. https://doi.org/10.1006/jcat.2002.3627
- W. J. Jang, D. W. Jeong, J. O. Shim, H. M. Kim, W. B. Han, J. W. Bae, and H. S. Roh, Renew. Ener. 79(2015) 91-95. https://doi.org/10.1016/j.renene.2014.08.032
- 15. M. Yang and H. Papp, Catal. Today 115(2006) 199-204. https://doi.org/10.1016/j.cattod.2006.02.047