Synthesis of Pt-Au nanoparticles supported on reduced graphene oxide as a highly active and durability catalyst for electro-oxidation of ethanol

Hoang Tien Nguyen, Ngoc Bich Nguyen, Minh Quang Nguyen, Lien Hong Nguyen, Ha Thu Thi Vu

Abstract


Design of advanced electrocatalyst, with high active and stability in electro-oxidation reactions for Direct Alcohol Fuel Cells system is urgent scientific need in the context of electrochemical energy application.Herein, Pt-Au nanoparticles supported on reduced graphene oxide, with low content of metals (With the theoretical content of 1.87% (Au) and 4.67% (Pt)), as a highly active and durability catalyst for electro-oxidation of ethanol is successfully synthesized. The current density (mass specific activity) of the PtAu/rGO catalyst for electro-oxidation ethanol, in alkaline media, was 13195 mA mgPt-1, which is 1.26 times higher than that of the Pt/rGO catalyst. After 4000s, the current density of PtAu/rGO catalyst reached 317 mA mgPt-1, is higher than that of Pt/rGO catalyst, reaching 172 mA mgPt-1. The high catalytic activity and stability of the bimetallic PtAu/rGO catalyst in the electrochemical oxidation of ethanol in alkaline medium are attributed to the synergistic effect of Au, Pt and rGO, among which, Au not only plays the role of enhancing the dispersion of Pt, but also has the effect of preventing the agglomeration of Pt nanoparticles during the reaction. This research could open up the potential to develop advanced bimetallic PtAu materials that can be used as electrochemical catalysts for various reactions.


Keywords


Au-Pt/rGO; Durability improvement Graphene; Electro-oxidation Catalysts

Full Text:

PDF

References


Ahmed A.A., Al Labadidi M., Hamada A.T., Orhan M.F., Membranes, 12 (2022) 1266. https://doi.org/10.3390/membranes12121266.

Chang J., Wang G., Wang M. et al., Nat Energy 6 (2021) 1144–1153. https://doi.org/10.1038/s41560-021-00940-4

Roschger M., Wolf S., Mayer K., Singer M., Hacker V., Energies 15 (2022) 7234. https://doi.org/10.3390/en15197234.

Chandra Sekhar Yellatur et al, Nanotechnology 33 (2022) 335401. https://doi.org/10.1088/1361-6528/ac6df7

Thu Ha Thi Vu, Thao Thi Nguyen, Tien Hoang Nguyen, Minh Dang Nguyen, Quang Minh Nguyen, Electrochimica Acta 380 (2021) 138258. https://doi.org/10.1016/j.electacta.2021.138258.

Wu W, Tang Z, Wang K, Liu Z, Li L, Chen S. P, Electrochimica Acta 260 (2018) 168-76. https://doi.org/10.1016/j.electacta.2017.11.057.

Rakoˇcevi´c, L.; Simatovi´c, I.S.; Maksi´c, A.; Raji´c, V.; Štrbac, S.; Sreji´c, I., Catalysts 12 (2022) 43. https://doi.org/10.3390/catal12010043.

M. Beltrán-Gastélum, M.I. Salazar Gastelum, J.R. Flores Hernandez, G.G. Botte, S.P. Sicairos, T. Romero Castañon, E. Reynoso Soto, R.M. Félix-Navarro, Energy, 181 (2019) 1225-1234. https://doi.org/10.1016/j.energy.2019.06.033.

Vitale A, Murad H, Abdelhafiz A, Buntin P, Alamgir FM., ACS Appl Mater Interfaces 11 (1) (2019) 1026-32. https://doi.org/10.1021/acsami.8b17274.

Gatalo M, Javanovi P, Polymeros G, Grote JP, Ruiz-Zepeda F, Selih VS, Sala M, Hocevar S, Bele M, Mayrhofer KJJ, Hodnik N, Gaberscek M., ACS Catal, 6 (2016) 1630-4. https://doi.org/10.1021/acscatal.5b02883.

Jang HD, Kim SK, Chang H, Choi J-H, Cho B-G, Jo EH, Choi J-W, Huang J., Carbon 2015; 93:869-77. https://doi.org/10.1016/j.carbon.2015.06.009.

Vilian ATE, Hwang S-K, Kwak CH, Oh SY, Kim C-Y, Lee G-W, Lee JB, Huh YS, Han Y-K., Synthetic Metals 219 (2016) 52-9. https://doi.org/10.1016/j.synthmet.2016.04.013.

W.S.Hummers, R.E. Offeman, Journal of the American Chemical Society 80 (1958) 1339. https://doi.org/10.1021/ja01539a017.

Mahapatra, S. S., & Datta, J., International Journal of Electrochemistry, 2011, 1–16. https://doi.org/10.4061/2011/563495.

C. Jin, J. Zhu, R. Dong, and Q. Huo, Electrochim. Acta, 190 (2016) 829–834. https://doi.org/10.1016/j.electacta.2015.12.222.

J. K. Lee, J. Lee, J. Han, T. H. Lim, Y. E. Sung, and Y. Tak, Electrochim. Acta, 53 (9) (2008) 3474–3478. https://doi.org/10.1016/j.electacta.2007.12.031.

S. Mourdikoudis et al., Nanoscale, vol. 7, no. 19, pp. 8739–8747, 2015. https://doi.org/10.1039/C4NR07481E.

Y. Wang, S. Zou, and W. Bin Cai, Catal. 5 (2015) 1507-1534. https://doi.org/10.3390/catal5031507.

A. S. Pushkarev et al., Catal. 9 (3) (2019) 271. https://doi.org/10.3390/catal9030271.

G. Yang, Q. Zhang, H. Yu, and F. Peng, Particuology, 58 (2021) 169–186. https://doi.org/10.1016/j.partic.2021.01.007.




DOI: https://doi.org/10.51316/jca.2023.054

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA