The catalytic activity of manganese oxide catalysts for the toluene oxidation process

Hien Thu Thi Tran, Chuc Van Nguyen, Thuy Bich Ly, Quang Dinh Ta, Hung Thanh Nguyen, Hung Manh Khong, Thang Minh Le

Abstract


Manganese oxide catalysts were prepared by several preparation methods, such as hydrothermal, sol-gel method, and characterized by XRD, BET, H2-TPR, SEM-EDS, and FT-IR. The catalytic activities of catalysts were evaluated through the toluene reaction at the temperature range of 150 oC – 400 oC. Among the catalysts, the @ MnO2 150  catalyst exhibited the highest catalytic activity. It could completely convert toluene into CO2 at 300  oC. The larger specific surface area and lower reduction temperature enhance the higher activity of the @ MnO2 150 catalyst. Thus, the @ MnO2 150  catalyst is chosen to study in the subsequent research.


Keywords


Manganese oxide catalysts; toluene oxidation

Full Text:

PDF

References


W. G. Tucker, Digital Engineering Library @McGraw-Hill, 2001.

R. M. Heck, R. J. Farrauto, Wiley-Interscience, 2009.

A. C. Lewis, N. Carslaw, P. J. Marriott, R. M. Kinghorn, P. Morrison, A. L. Lee, K. D. Bartle, M. J. Pilling, Nature 405 (2000) 778–781. https://doi.org/10.1038/35015540

I. C. Marcu, A. Urda, I. Popescu, V. Hulea, IGI Global (2017) 59–121. https://doi.org/ 10.4018/978-1-5225-0492-4.ch003

M. J. Molina, F. S. Rowland, Nature 249 (1974) 810–812.

https://doi.org/10.1038/249810a0

M. Amann, M. Lutz, J. Hazard. Mater. 78( 2000) 41–62.

https://doi.org/10.1016/s0304-3894(00)00216-8

S. Ascaso, M. E. Gálvez, P. Da Costa, R. Moliner, M. Jesús Lázaro Elorri, Comptes Rendus Chimie 18 (2015) 1007–1012. https://doi.org/10.1016/j.crci.2015.03.017

L. Lazar, H. Koeser, I. Fechete, I. A. Balasanian Revista de Chimie 71 (2020) 79–87. https://doi.org/10.37358/Rev. Chim.1949

B. J. Finlayson-Pitts, J. N. Pitts Jr, Science 276 (1999) 1045–1051. https://doi.org/ 10.1126/science.276.5315.1045.

M. Stoian, L. Lazar, F. Uny, I. Fechete, Revista Chimie 71 (2020) 97–113. https://doi.org/ 10.37358/RC.20.7.8229

M. Alifanti, M. Florea, V. I. Pârvulescu, Applied Catalysis B: Environmental 70 (2007) 400-405. https://doi.org/10.1016/J.APCATB.2005.10.037

A.K. Datye, J. Bravo, T.R. Nelson, P. Atanasova, M. Lyubovsky, L. Pfefferle, App. Catal. A, 2000, 198, 179-196.

Y.H. Chin, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc. 135 (2013) 15425-15442. https://doi.org/10.1021/ja405004m

H. Xiong, K. Lester, T. Ressler, R. Schlögl, L.F. Allard, A.K. Datye, Catal. Lett. 147 (2017) 1095-1103. https://doi.org/10.1007/s10562-017-2023-7

X. Zou, Z. Rui, H. Ji, ACS Catal. 7 (2017) 1615-1625 https://doi.org/10.1021/acscatal.6b03105

M. S. Kamal, S. A. Razzak, M. M. Hossain, Atmos. Environ. 140 (2016) 1117-134. https://doi.org/10.1016/j.atmosenv.2016.05.031

C. Lahousse, A. Bernier, E. Gaigneaux, P. Ruiz P, P. Grange, B. Delmon, Proceedings of the 3rd World Congress on Oxidation Catalysis 1997 777–785. https://doi.org/10.1016/S0167-2991(97)81040-3.

J. Luo., Q. Zhang, A. Huang, S. L. Suib, Micropor. Mesopor. Mat. 35-36 (2000) 209–217. https://doi.org/10.1016/S1387-1811(99)00221-8

F. N. Aguero, A. Scian, B. P. Barbero, L. E. Cadús, Catal. Today 133 – 135 (2008) 493–501. https://doi.org/10.1016/j.cattod.2007.11.044

Q. Sun, L. Li, H. Yan, X. Hong, K.S. Hui, Z. Pan, J. Chem. Eng. 242 (2014) 348–356. https://doi.org/10.1016/j.cej.2013.12.097

N. Huang, Z. Qu, C. Dong, Y. Qin, X. Duan, Appl Catal A 560 (2018) 195–205. https://doi.org/10.1016/j.apcata.2018.05.00

T. T. H. Tran, B. T. Ly, T. M. P. Pham, M. T. Le, Vietnam Journal of Catalysis and Adsorption, 10 (2021). https://doi.org/10.51316/jca.2021.068

Li J., Li L., Wu F., Zhang L., Liu X, Catal. Comm. 31 (2017) 52-56. https://doi.org/10.1016/j.catcom.2012.11.013

V. P. Santos M. F. R. Pereira, J. J. M. Orfao, J. I. Figueiredo, Appl. Catal.B: Environ. 99 (2010) 353-363. https://doi.org/10.1016/j.apcatb.2010.07.007

W. Tang, X. Wu, D. Li, G. Liu, H. Liu, Y. Chen, J. Mater. Chem. A 2 (2014) 2544-2554. https://doi.org/10.1039/C3TA13847J

Q. Ye, J. Zhao, F. Huo, J. Wang, S. Cheng, T. Kang, H. Dai, Catal.Today 175 (2011) 603-609. https://doi.org/10.1016/j.cattod.2011.04.008

V. Sannasi, K. Subbian, J. Mater. Sci.: Mater. Electron. 31 (2020) 17120–17132. https://doi.org/10.1007/s10854-020-04272-z

W. Yang, Y. Peng, Y. Wang, H. Liu, Z. Su, W. Yang, J. Chen, W. Si, J. Li, Applied Catalysis B: Environmental, 278 (2020). http://doi.org/10.1016/j.apcatb.2020.119279

X. Wang, Y. Li, Chem. Eur. J. 9 (2003) 300-306. https://doi.org/10.1002/chem.200390024

L. Kang, M. Zhang, Z - H. Liu, K. Ooi, Spectrochim. Acta A Mol. Biomol. Spectrosc. 67 (2007) 864–869. https://doi.org/10.1016/j.saa.2006.09.001




DOI: https://doi.org/10.51316/jca.2023.039

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA