Highly adsorptive removal of oxytetracycline in water environment using polyanion modified alumina nanoparticles

Diu Thi Dinh, Han Bao Nguyen, Duc Tien Pham

Abstract


In this study, adsorptive removal of an antibiotic oxytetracycline (OTC) using polyanion poly(2-acrylamide-2-methylpropane sulfonic acid), PAMPs modified α-Al2O3 nanoparticles (PAMNA) was investigated. Surface modification of α-Al2O3 nanoparticles by PAMPs enhanced the removal efficiency of OTC significantly from 35.5 to 90.7 %. The optimum conditions for adsorptive removal of OTC using PAMNA were found to be pH 4, contact time 120 min and adsorbent dosage 20 mg/mL. Under selected conditions, the removal efficiency of OTC using PAMNA was greater than 90 % while the maximum adsorption capacity reached 140.2 mg/g. After three regenerations, the removal efficiencies of OTC were still higher than 75 %. The results of adsorption isotherms of OTC on PAMNA and the surface charge change of PAMNA indicate that both electrostatic and non-electrostatic interactions control OTC adsorption on PAMNA.


Keywords


OTC; adsorption; α-Al2O3; water treatment

Full Text:

PDF

References


T.G. Ambaye, M. Vaccari M, E.D. van Hullebusch, A. Amrane, S. Rtimi S, International Journal of Environmental Science and Technology18 (2021) 3273–3294. https:// 10.1007/s13762-020-03060-w.

T.D. Pham TD, T.T. Tran, V.A. Le, T.T. Pham, T.H. Dao, T.S. Le. Journal of Molecular Liquids 287 (2019) 110900. https://doi.org/10.1016/j.molliq.2019.110900.

N.H. Tran, H. Chen , T.V. Do, M. Reinhard, H.H. Ngo, Y.He, Talanta 159 (2016) 163-73. https://doi.org/10.1016/j.talanta.2016.06.006.

T.H.Y. Doan, T.H. Hoang, V.A. Le, D.N. Vu, T.N. Vu, A.L. Srivastav, T.D. Pham Environmental Research. 216 (2023) 114618. https://doi.org/10.1016/j.envres.2022.114618.

C. Wang, X. Pan, Y. Fan, Y. Chen, W. Mu Environmental Toxicology and Pharmacology 56 (2017) 35-42. https://doi.org/10.1016/j.etap.2017.08.019.

C. Zhao, H. Deng, Y. Li, Z. Liu Journal of Hazardous Materials 176 (2010) 884-92 https://doi.org/10.1016/j.jhazmat.2009.11.119.

T.H. Le, Ng C, N.H. Tran, H. Chen, H.Y-H. Gin Water Research 145 (2018) 498-508. https://doi.org/10.1016/j.watres.2018.08.060.

L. Liu, Wang M-x, M-m Liu, F. Liu, L. Weng, L.K. Koopal, F.T Wang, Journal of Hazardous Materials 226 (2012) 28-35.

https://doi.org/10.1016/j.jhazmat.2012.04.060.

T.T.T Truong, T.N. Vu, T.D. Dinh, T.T. Pham, T.A.H. Nguyen, M.H. Nguyen, T.D. Nguyen, S. Yusa, T.D. Pham, Progress in Organic Coatings 158 (2021) 106361. https://doi.org/10.1016/j.porgcoat.2021.106361.

J. Zhao J, G. Liang, X. Zhang, X. Cai, R. Li, X. Xie, Science of The Total Environment. 688 (2019) 1205-15. https://doi.org/10.1016/j.scitotenv.2019.06.287.

T.H. Dao, T.Q.M Vu, N.T. Nguyen, T.T Pham, T.L. Nguyen, S. Yusa, T.D. Pham Langmuir 36(43) (2020). https://doi.org/10.1021/acs.langmuir.0c02352.

N.T Nguyen, T.H. Dao, T.T. Truong, T.M.T. Nguyen, T.D. Pham Journal of Molecular Liquids 309 (2020) 113150

https://doi.org/10.1016/j.molliq.2020.113150.

A.V. Delgado, F. C. González, R.J. Hunter, L.K. Koopal, J. Lyklema J. Journal of Colloid and Interface Science 309(2) (2007) 194-224 https://doi.org/10.1016/j.jcis.2006.12.075

M. Jia, F. Wang, Y. Bian, X. Jin, Y. Song, F.O. Kengara, R. Xu, X. Jiang Bioresource Technology. 136 (2013) 87-93. https://doi.org/10.1016/j.biortech.2013.02.098.

J.K. Wolterink, L.K. Koopal, M.A.C. Stuart, W. H. Van Riemsdijk. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 291 (2006) 13-23. http://dx.doi.org/10.1016/j.colsurfa.2006.04.053.

W-R Chen, C.H. Huang C-H. Chemosphere. 79(8) (2010) 779-85. http://dx.doi.org/10.1016/j.chemosphere.2010.03.020.




DOI: https://doi.org/10.51316/jca.2023.030

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA