Sol-gel synthesis and characterization of neodymium orthoferrite for disposing oily wastewater

Nga To Thi Phan, Nam Hai Thi Chu

Abstract


The aim of this study was to design and characterize a NdFeO3-based photocatalyst prepared by sol-gel method for treatment of oily wastewater. Different characterization techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), UV–vis spectrophometer were used to elucidate the structure, morphology, surface functional groups, and optical absorption properties of the prepared NdFeO3 photocatalyst. The photo-Fenton degradation performance of the as-prepared NdFeO3 photocatalyst was investigated by degrading oily-containing wastewater under visible light irradiation. The NdFeO3 photocatalyst manifests the high chemical oxygen demand (COD) removal efficiency of 97.6 % for 120 min reaction) thanks to its narrow band gap energy and high crystalline degree.


Keywords


NdFeO3; sol-gel; photo-Fenton; visible light; oily wastewater

Full Text:

PDF

References


De-Nasri, S.J., et al., Chem. Engi. J. 420 (2021) 127560. https://doi.org/10.1016/j.cej.2020.127560

Hernández-Coronado, E.E., et al., J. Environ. Chem. Eng. 9(6) (2021) 106822. https://doi.org/10.1016/j.jece.2021.106822

Hassaan, M., et al., Egyptian J. Chem. 63(4) (2020) 1443-1459. http://doi.org/10.21608/EJCHEM.2019.15799.1955

Li, J., et al., J. Environ. Chem. Eng. (2022) 108329. https://doi.org/10.1016/j.jece.2022.108329

Rajaitha, P.M., et al., J. Alloys Compd. 915 (2022) 165402. https://doi.org/10.1016/j.jallcom.2022.165402

Quiñonero, J., et al., ACS Appl. Mater. Inter. 13(12) (2021) 14150-14159. https://doi.org/10.1021/acsami.0c21792

Tongyun, C., et al., J. Rare Earths 30(11) (2012) 1138-1141. https://doi.org/10.1016/S1002-0721(12)60194-X

Prabagar, J.S., et al., Mater. Today: Proceedings 75 (2023) 15-23. https://doi.org/10.1016/j.matpr.2022.10.230

Omari, E. and M. Omari, Inter. J. Hydro. Ener. 47(32) (2022) 14542-14551. https://doi.org/10.1016/j.ijhydene.2022.02.197

Khorasani-Motlagh, M., et al., Inter. J. Nanosci. Nanotechnol. 9(1) (2013) 7-14.

Shanker, J., et al., Phys. Letters A 382(40) (2018) 2974-2977. https://doi.org/10.1016/j.physleta.2018.07.002

Wang, Y., et al., CrystEngComm 16(5) (2014) 858-862.

https://doi.org/10.1039/C3CE41434E

Yousefi, M., S. Zeid, and M. Khorasani-Motlagh, Current Chem. Let. 6(1) (2017) 23-30. http://doi.org/10.5267/j.ccl.2016.10.002

Pokhriyal, P., et al., ECS J. Solid State Sci. Technol. 10(7) (2021) 073005.

Danks, A.E., S.R. Hall, and Z. Schnepp, Mater. Horizons 3(2) (2016) 91-112. http://doi.org/10.1149/2162-8777/ac10cc

Shlapa, Y., S. Solopan, and A. Belous, J. Mag. Mag. Mater. 510 (2020) 166902. https://doi.org/10.1016/j.jmmm.2020.166902

Li, C., et al., J. Phys. Chem. Solids 113 (2018) 151-156. https://doi.org/10.1016/j.jpcs.2017.10.039

Albadi, Y., et al., Inorganics 9(5) (2021) 39. https://doi.org/10.3390/inorganics9050039

Wang, Y., et al., Mater. Let. 60(13-14) (2006) 1767-1770. https://doi.org/10.1016/j.matlet.2005.12.015

Xu, L., et al., World J. Nanosci. Eng. 2 (2012) 154-160. http://doi.org/10.4236/wjnse.2012.23020

Li, X., et al., Chem. Mater. 22(17) (2010) 4879-4889.

https://doi.org/10.1021/cm101419w

Singh, S., et al., Sensors Actuat. B: Chem. 177 (2013) 730-739. https://doi.org/10.1016/j.snb.2012.11.096

Ren, G., et al., Nanomater. 11(7) (2021) 804. https://doi.org/10.3390/nano11071804

Phan, T.T.N., T.T.N. Phan, and T.H. Pham, J. Porous Mater. (2022) 1-12. https://doi.org/10.1007/s10934-022-01378-z

Phan, T.T.N., et al., Appl. Surf. Sci. 491 (2019) 488-496. https://doi.org/10.1016/j.apsusc.2019.06.133




DOI: https://doi.org/10.51316/jca.2023.027

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA