Effect of pH and active radical on the photodegradation of Ciprofloxacin antibiotic in wastewater using novel catalyst based on rGO/halloysite composite decorating with copper iron oxide

NGO Ha-Son, Linh Thi Nguyen

Abstract


A new generation photocatalyst CuFe2O4/rGO/halloysite nanotube (HNT) was manufactured using a simple procedure in this work. Material characterisation results reveal that the CuFe2O4 active phase with a size of around 30-40 nm is spread rather consistently across the sandwich-like structure of rGO/HNT. The material's bandgap energy is around 1.9 eV, which boosts the material's capacity to function even in the visible light area. The catalytic activity test showed that the catalyst, with an active phase composition of 70% by weight, was able to completely decomposing CIP after just 1 hour of light. The pHpzc value and pH impact were also investigated. The findings suggest that the material can completely handle CIP in a neutral environment (pH = 7). Scavenger tests also demonstrated the involvement of reactive radicals in CIP degradation, with holes (h+) and hydroxyl radicals (OH) having the major effect. These important results constitute the basis for the in-depth investigations of the CIP degradation mechanism.


Keywords


Antibiotic photodecomposition; copper iron oxide; reduced gaphene oxide/halloysite nanotube; pH; active radical

Full Text:

PDF

References


Adams C, Wang Y, Loftin K, Meyer M, J Environ Eng 128 (2002) 253–260. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)

Alam SN, Sharma N, Kumar L, Graphene 6 (2017) 1–18.

https://doi.org/10.4236/graphene.2017.61001

Ali K, Bahadur A, Jabbar A, et al., J Magn Magn Mater 434 (2017) 30–36. https://doi.org/10.1016/j.jmmm.2016.12.009

Anjana Anand AS, Adish Kumar S, Rajesh Banu J, Ginni G Desalination Water Treat 57 (2016) 8236–8242. https://doi.org/10.1080/19443994.2015.1021843

Cheng R, Fan X, Wang M, et al., RSC Adv 6 (2016) 18990–18995. https://doi.org/10.1039/C5RA27221A

Coronado JM, Photons, Electrons and Holes: Fundamentals of Photocatalysis with Semiconductors. In: Coronado JM, Fresno F, Hernández-Alonso MD, Portela R (eds) Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. Springer, London, 2013, p.5–33

Corra L, J Health Pollut 8 (2018) 180916. https://doi.org/10.5696/2156-9614-8.19.180916

Das S, Ghosh S, Misra AJ, et al., Int J Environ Res Public Health 15 (2018) 2440. https://doi.org/10.3390/ijerph15112440

Dey C, De D, Nandi M, Goswami MM, Mater Chem Phys 242 (2020) 122237. https://doi.org/10.1016/j.matchemphys.2019.122237

Dhanda R, Kidwai M, RSC Adv 6 (2016) 53430–53437. https://doi.org/10.1039/C6RA08868F

Dietrich DR, Webb SF, Petry T, Toxicol Lett 131 (2002) 1–3.

https://doi.org/10.1016/s0378-4274(02)00062-0

Gao C, Li B, Chen N, et al., RSC Adv 6 (2016) 49228–49235.

https://doi.org/10.1039/C6RA01279E

H. Kamel A, Hassan AA, Amr AE-GE, et al., Nanomaterials 10 (2020) 586. https://doi.org/10.3390/nano10030586

Igwegbe CA, Oba SN, Aniagor CO, et al., J Ind Eng Chem 93 (2021) 57–77. https://doi.org/10.1016/j.jiec.2020.09.023

Kumar A, Rout L, Achary LSK, et al., Sci Rep 7 (2017) 42975.

https://doi.org/10.1038/srep42975

Kümmerer K, Chemosphere 75 (2009) 417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

Kuvarega AT, Selvaraj R, Mamba BB, Graphene-Based Photocatalytic Materials: An Overview. In: Balakumar S, Keller V, Shankar MV (eds) Nanostructured Materials for Environmental Applications. Springer International Publishing, Cham, 2021, p. 433–454

Ling Tan H, F. Abdi F, Hau Ng Y, Chem Soc Rev 48 (2019) 1255–1271. https://doi.org/10.1039/C8CS00882E

Liu P, Zhao M, Appl Surf Sci 255 (2009) 3989–3993. https://doi.org/10.1016/j.apsusc.2008.10.094

Liu Y, Jiang X, Li B, et al., J Mater Chem A 2 (2014) 4264–4269. https://doi.org/10.1039/C3TA14594H

Malakootian M, Kannan K, Gharaghani MA, et al., J Environ Chem Eng 7 (2019) 103457. https://doi.org/10.1016/j.jece.2019.103457

Malakootian M, Nasiri A, Mahdizadeh H, Water Sci Technol 78 (2018) 2158–2170. https://doi.org/10.2166/wst.2018.494

Muthu RN, Rajashabala S, Kannan R, RSC Adv 6 (2016) 79072–79084. https://doi.org/10.1039/C6RA13865A

Nanda KK, Swain S, Satpati B, et al., ACS Appl Mater Interfaces 7 (2015) 7970–7978. https://doi.org/10.1021/acsami.5b00022

Nasiri A, Tamaddon F, Mosslemin MH, et al., Environ Health Eng Manag 6 (2019) 41–51. https://doi.org/10.15171/EHEM.2019.05

Nhi LTT, Thuan LV, Uyen DM, et al., RSC Adv 10 (2020) 16330–16338. https://doi.org/10.1039/D0RA01854F

Noh JS, Schwarz JA, J Colloid Interface Sci 130 (1989) 157–164.

https://doi.org/10.1016/0021-9797(89)90086-6

Rakshit S, Sarkar D, Elzinga EJ, et al., J Hazard Mater 246–247 (2013) 221–226. https://doi.org/10.1016/j.jhazmat.2012.12.032

Tamaddon F, Nasiri A, Yazdanpanah G, MethodsX 7 (2019) 74–81. https://doi.org/10.1016/j.mex.2019.12.005

Yu L, Zhang Y, Zhang B, Liu J, Sci Rep 4 92014) 4551. https://doi.org/10.1038/srep04551

Zaviska F, Drogui P, Grasmick A, et al, J Membr Sci 429 (2013) 121–129. https://doi.org/10.1016/j.memsci.2012.11.022

Zeng G, He Y, Ye Z, et al., Ind Eng Chem Res 56 (2017) 10472–10481. https://doi.org/10.1021/acs.iecr.7b02723

Zeng Y, Chen D, Chen T, et al., Chemosphere 227 (2019) 198–206. https://doi.org/10.1016/j.chemosphere.2019.04.039

Zhang X, Feng M, Qu R, et al., Chem Eng J 301 (2016) 1–11. https://doi.org/10.1016/j.cej.2016.04.096

Zhao D, Zhou J, Liu N, Mater Sci Eng A 431 (2006) 256–262. https://doi.org/10.1016/j.msea.2006.06.001




DOI: https://doi.org/10.51316/jca.2023.015

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA