Investigation of the Cam leaf extraction process oriented to synthesize silver nanoparticles (Ag NPs)

Cuong Manh Le, Chung Cong Le, Thai Thanh Tran, Lan Anh Thi Luu

Abstract


In the present work, the extract process of Cam leaves powder (Peristrophe bivalvis(L.) Merr) was investigated. The results exhibited optimal parameters of the extract process. Green synthesis of silver nanoparticles was demonstrated using the freshly prepared aqueous extract of the Cam leaves powder as a reducing and stabilizing agent. The silver nanoparticles were characterized by analytical techniques such as UV-Vis, FTIR, Raman, XRD, and EDX. Characterization techniques confirmed that the silver nanoparticles were synthesized

Keywords


Cam leaf; Extract; Green synthesis; Silver nanoparticles

Full Text:

PDF

References


Q. Saquib, M. Faisal, and A. Abdulrahman,. Springer, 2020, p.323.

https://doi.org/10.1007/978-981-15-5179-6.

J. Yang et al., Nanomaterials 9 (2019) 424-463. https://doi.org/10.3390/nano9030424.

U.S.Amjad, L.Sherin, M.F.Zafar, and M. Mustafa, Arab.J.Sci. Eng. 44 (2019) 9851-98570. https://doi.org/10.1007/s13369-019-03994-5.

A. G. Rama Krishna, C. S. Espenti, Y. V. Rami Reddy, A. Obbu, and M. V. Satyanarayana, J. Inorg. Organomet. Polym. Mater. 30 (2020) 4155-4159. https://doi.org/10.1007/s10904-020-01567-w.

H. I. Abdel-Shafy and M. S. M. Mansour, Scrivener Publishing LLC (2018) 321–385.https://doi.org/10.1002/9781119418900.ch11.

H. Fudouzi and Y. Xia, Adv. Mater. 15 (2003) 892-896.

https://doi.org/10.1002/adma.200304795.

P. Patanjali, R. Singh, A. Kumar, and P. Chaudhary, Elsevier Inc.,. (2019) 485 https://doi.org/10.1016/B978-0-08-102579-6.00021-6

A. Syafiuddin, et al, J. Chinese Chem. Soc. 64 (2017) 732–756.

https://doi.org/10.1002/jccs.201700067.

D. Malina, A. Sobczak-Kupiec, Z. Wzorek, and Z. Kowalski, Dig. J. Nanomater. Biostructures 7 (2012) 1527-1534.

S. M. Lee, K. C. Song, and B. S. Lee, Korean J. Chem. Eng. 27 (2010) 688-692. https://doi.org/10.1007/s11814-010-0067-0.

F. P. Mehr, M. Khanjani, and P. Vatani, Orient. J. Chem. 31 (2015) 1831–1833. https://doi.org/10.13005/ojc/310367.

S. Ghosh, S. S. Acharyya, R. Singh, P. Gupta, and R. Bal, Catal. Commun. 72 (2016) 33-37. https://10.1016/j.catcom.2015.09.001.

T. Rehab K. Mahmoud et al, Journal of Environmental Chemical Engineering 7 (2019) 102977. https://doi.org/10.1016/j.jece.2019.102977

G. M. Meheretu, D. Cialla, and J. Popp, Int. J. Biochem. Biophys. 2 (2014) 63-67. https://doi.org/10.13189/ijbb.2014.020403.

A. Rana, K. Yadav, and S. Jagadevan, J. Clean. Prod. 272 (2020) 122880. https://doi.org/10.1016/j.jclepro.2020.122880.

T. T. Thuy et al., Biochem. Syst. Ecol. 44 (2012), 205–207. https://doi.org/10.1016/j.bse.2012.05.009.

N. Van Quan, et al., Int. J. Pharmacol. Phytochem. Ethnomedicine 4 (2014) 14-26. https://doi.org/10.18052/www.scipress.com/ijppe.4.14.

R. Brouillard, G. A. Iacobucci, and J. G. Sweeny, J. Am. Chem. Soc. 104 (1982) 7585-7590. https://10.1021/ja00390a033.

C. Qin, Y. Li, W. Niu, Y. Ding, R. Zhang, and X. Shang, Czech J. Food Sci. 28 (2010) 117-126. https://doi.org/10.17221/228/2008-cjfs.

L. Zhang, Y. Liu, Y. Wang, M. Xu, and X. Hu, Food Chem. 263 (2018) 208-215. https://doi.org/10.1016/j.foodchem.2018.05.009.

G. J. Yang et al., J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 856 (2007) 222-228. https://10.1016/j.jchromb.2007.06.002.

M. T. de A. F. José et al., African J. Biotechnol. 18 (2019) 920–927. https://doi.org/10.5897/ajb2019.16905.

H. K. Lichtenthaler and C. Buschmann, Curr. Protoc. Food Anal. Chem. 1 (2001) 431-438. https://doi.org/10.1002/0471142913.faf0403s01.

A. J. Meléndez-Martínez, C. M. Stinco, and P. Mapelli-Brahm, Nutrients 11 (2019) 1093-1133. https://doi.org/10.3390/nu11051093.

T. T. Thuy, et al., Nat. Prod. Res. 27 (2013) 771-774.

https://doi.org/10.1080/14786419.2012.698409.

J. Phaopongthai, J. Noiphrom, S. Phaopongthai, N. Pakmanee, and J. Sichaem, Nat. Prod. Res. 30 (2016) 697-699. https://doi.org/10.1080/14786419.2015.1038810.

R. T. Evitasari, E. Rahayuningsih, and A. Mindaryani, AIP Conf. Proc. 2085 (2019). https://doi.org/10.1063/1.5095033.

D. B. Khue et al., Ann. food Sci. Technol. 15 (2014) 1-9.

T. T. Thuy et al., Biochem. Syst. Ecol. 44 (2012) 205-207.

https://doi.org/10.1016/j.bse.2012.05.009.

V. H. Mai, V. H. La, and H. C. Do, Syst. Rev. Pharm., 11 (2020) 114-117. https://doi.org/10.31838/srp.2020.8.16.

Q.-U. Le, H.-L. Lay, M.-C. Wu, and T. H.-H. Nguyen, J. Food, Nutr. Agric. 1 (2018) 40. https://10.21839/jfna.2018.v1i1.220.

N. Anh Luu-dam and B. K Ninh, Anthropology, 4 (2016) 1-6.

https://doi.org/10.4172/2332-0915.1000158.

Nguyen Cong Tu, Ho Minh Sang, Luu Thi Lan Anh, and Nguyen Huu Lam, Journal of Nanoscience and Nanotechnology 21 (2021) 1-8. https://doi.org/10.1166/jnn.2021.19102.

G. A. Molina et al., Colloids Surfaces B Biointerfaces 180 (2019) 141-149. https://doi.org/10.1016/j.colsurfb.2019.04.044.

V. D. Doan et al., J. Nanomater., 2020 (2020), 1-18. https://doi.org/10.1155/2020/8492016.

V. T. Le et al., J. Nanomater. 2021 (2021) 1-11 pages. https://doi.org/10.1155/2021/5571663.

Z. L. Cai, H. Zeng, M. Chen, and A. W. D. Larkum, Biochim. Biophys. Acta - Bioenerg. 1556 (2002), 89-91. https://doi.org/10.1016/S0005-2728(02)00357-2.

A. Gall, A. A. Pascal, and B. Robert, Biochim. Biophys. Acta - Bioenerg. 1847 (2015) 12-18. https://doi.org/10.1016/j.bbabio.2014.09.009.




DOI: https://doi.org/10.51316/jca.2023.014

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA