Fabrication of composited electrode based on coconut activated carbon and MCNTs for ionic electrosorption

Nguyen Thanh Le Huynh, Nhut Tran Thanh, Nguyen Thanh Thi Ho, Hai Le Viet, Hoang Nguyen Thai

Abstract


Activated carbon (AC) derived from coconut shells (Tra Bac Company, Vietnam) is a promising candidate material for the capacitance deionization (CDI) technology due to their low-cost, abundance and its high surface area. In our work, the composites AC/MCNTs electrodes were prepared using the polyvinyl alcohol (PVA) and glutaric anhydride (GA) as cross-linking binder. The morphological properties were investigated by scanning electron microscopy (SEM). The electrochemical properties were performed by electrochemical measurements such as: cyclic voltammetry (CV), cyclic charge – discharge (CDC). The composite electrode with 1% CNTs (wt.) showed encouragingly a specific capacitance of 94.0 F/g and a salt absorption capacity of 11.2 mg/g with stable performance.

Keywords


CDI; Activated carbon; composite AC/MCNTs electrode

Full Text:

PDF

References


P. M. B. S. Porada, R. Zhao, A. van der Wal, V. Presser, Progress in Materials Science (2013) 58 1388–1442. https://10.1016/j.pmatsci.2013.03.005

S. Cheng, H. Gong, C. Li, B. Guo, and P. Zhang, Proc. 11th Int. Conf. Electr. Mach. Syst. ICEMS 2008 (2008) 3854–3857.

Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, and L. Pan, RSC Adv. (2015) 5 20 15205–15225. https://10.1039/c4ra14447c

H. Li, L. Pan, C. Nie, Y. Liu, and Z. Sun, J. Mater. Chem. (2012) 22 31 15556–15561. https://10.1039/c2jm32207b

M. S. Gaikwad and C. Balomajumder, Anal. Lett., (2016) 49 11 1641–1655. https://doi.org/10.1080/00032719.2015.1118485

G. Wang et al., Electrochim. Acta (2012) 69 65–70. https://doi.org/10.1016/j.electacta.2012.02.066

P. Xu, J. E. Drewes, D. Heil, and G. Wang, Water Res. (2008) 42 10–11 2605–2617. https://doi.org/10.1016/j.watres.2008.01.011

C. H. Hou, N. L. Liu, H. L. Hsu, and W. Den, Sep. Purif. Technol. (2014) 130 7–14. https://doi.org/10.1016/j.seppur.2014.04.004

D. Zhang, X. Wen, L. Shi, T. Yan, and J. Zhang, Nanoscale (2012) 4 17 5440–5446. https://doi.org/10.1039/c2nr31154b

H. Pan, J. Yang, S. Wang, Z. Xiong, W. Cai, and J. Liu, J. Mater. Chem. A (2015) 3 26 13827–13834. https://doi.org/10.1039/c5ta02954f

W. Huang, Y. Zhang, S. Bao, R. Cruz, and S. Song, Desalination (2014) 340 1 67–72. https://doi.org/10.1016/j.desal.2014.02.012

Y.-R. Nian and H. Teng, J. Electrochem. Soc. (2002) 149 8 A1008. https://doi.org/10.1149/1.1490535

B. S. Shen, W. J. Feng, J. W. Lang, R. T. Wang, Z. X. Tai, and X. Bin Yan, Wuli Huaxue Xuebao/ Acta Phys. - Chim. Sin. (2012) 28 7 1726–1732. https://doi.org/10.3866/PKU.WHXB201204261

X. Gao, A. Omosebi, J. Landon, and K. Liu, Environmental Science and Technology (2015) 49 18 10920–10926.

https://doi.org/10.1021/acs.est.5b02320

K.B. Hatzell, M.C. Hatzell, K.M. Cook, M. Boota, G.M. Housel, A. McBride, E.C Kumbur and Y. Gogotsi, Environ. Sci. Technol (2015) 49 5 3040–3047. https://doi.org/10.1021/es5055989

P. Slobodian, P. Riha, R. Olejnik, U. Cvelbar, and P. Saha, Compos. Sci. Technol. (2013) 81 54–60.

https://doi.org/10.1016/j.compscitech.2013.03.023

J. Elisadiki, T.E. Kibona, R.L. Machunda, M.W. Saleem, W.S. Kim and Y.A.C. Jande, Biomass Convers. Bioref. (2020) 10 1327–1356.

https://doi.org/10.1007/s13399-019-00463-9

L.K. Duyen, P.Q. Nghiep and L.A. Kien, Science & Technology Development (2016) 19 K6 155–164.

https://doi.org/10.32508/stdj.v19i3.570




DOI: https://doi.org/10.51316/jca.2023.010

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA