Synthesis of C/g-C3N4 composite with enhanced photocatalytic activity under visible light

Lan Nguyen Thi, Trang Phan Thi Thuy, Ha Tran Huu, Huong Nguyen Thi Thanh, Kim Nguyen Van, Thang Nguyen Van, Vien Vo

Abstract


In this study, banana-peel-derived carbon/g-C3N4 (BC/CN) composite was prepared by a facile calcinating method from the urea (NH2)2CO and banana-peel-derived carbon (BC) precursors. Whereas, the banana-peel-derived carbon was prepared from the waste banana peel as biomass source. The obtained composite was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), and N2 adsorption–desorption isotherms. The results showed that the BC/CN composite had the higher photocatalytic activities in the degradation Rhodamine B (85%) compared to the pristine g-C3N4 (31%) under visible light. This shows that the BC/CN composite as a promising new material with low cost for photodegradation of organic pollutants in wastewater

Keywords


Actived Carbon, biomass, photocatalysis, rhodamine B

Full Text:

PDF

References


Andreozzi, R., Caprio, V., Insola, A. and Marotta, R., Catalysis Today 53 (1999) 51-59. https://doi.org/10.1016/S0920-5861(99)00102-9

G. Mamba, A.K. Mishra, Appl. Catal. B 198 (2016) 347–377. https://doi.org/10.1016/j.apcatb.2016.05.052

D. Mohanta, A. Mahanta, S. R. Mishra, Sk. Jasimuddin, Md. Ahmaruzzaman, Environ. Res. 197 (2021) 111077. https://doi.org/10.1016/j.envres.2021.111077

P. Yang, H. Ou, Y. Fang, X. Wang, Angew. Chem. 129 (2017) 4050–4054. https://doi.org/10.1002/anie.201700286

S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27 (2015) 2150–2176. https://doi.org/10.1002/adma.201500033

Y. Deng, J. Liu, Y. Huang, M. Ma, K.Liu, X. Dou, Z. Wang, S. Qu, and Z. Wang, Adv. Funct. Mater. (2020) 2002353. https://doi.org/10.1002/adfm.202002353

I.Velo-Gala, J.J.López-Peñalver, M. Sánchez-Polo, J.Rivera-Utrilla, Applied Catalysis B: Environmental. 142-143 (2013) 694-704. https://doi.org/10.1016/j.apcatb.2013.06.003

H. Xiao, W. Wang, G. Liu, Z. Chen, K. L, J. Zhu, Appl. Surf. Sci. 358 (2015) 313-318. https://doi.org/10.1016/j.apsusc.2015.07.213

A. Chafidz1, W. Astuti, D. Hartanto, Aulia S. Mutia, P. R. Sari, MATEC Web of Conferences 154 (2018) 01021.

https://10.1051/matecconf/201815401021

E. S. Ngankam, L. Dai-Yang, B. Debina, A. Baçaoui, A. Yaacoubi, A. N. Rahman, Materials Sciences and Applications 11 (2020) 382-400. https//:10.4236/msa.2020.116026

J. Zhang, H. Tong, W. Pei, W. Liu, F. Shi, Y. Li, Y. Huo, Chemosphere 270 (2021) 129424. https://doi.org/10.1016/j.chemosphere.2020.129424

H. Zhang, J. Niu, Y. Guo, F. Cheng, Fuel (2021) 287. https://doi.org/10.1016/j.fuel.2020.119481

T. Van Thuan, B.T.P. Quynh, T.D. Nguyen, V.T.T. Ho, L.G. Bach, Surf. Interfaces 6 (2017) 209-217. https://doi.org/10.1016/j.surfin.2016.10.007

Md. R. Islam, A. K. Chakraborty, M. A. Gafur, Md. A. Rahman, Md. H. Rahman, Research on Chemical Intermediates 45 (2019) 1753-1773. https://doi.org/10.1007/s11164-018-3703-7

X. Chen, Dong-Hau Kuo, D. Lu, RSC Advances, (2016) 1-31. https://doi.org/10.1039/C6RA10357J

S. Ahmadi, H. Ganjidoust, Journal of Environmental Chemical Engineering 9 (2021) 106010. https://doi.org/10.1016/j.jece.2021.106010

S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25 (2009) 10397-10401. https://doi.org/10.1021/la900923z

P. Martín-Ramos, J. Martín-Gil, R.C. Dante, F. Vaquero, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energy 40 (2015) 7273–7281. https://doi.org/10.1016/j.ijhydene.2015.04.063

Q.J. Xiang, J.G. Yu, M. Jaroniec, J. Phys. Chem. C. 115 (2011) 7355–7363. https://doi.org/10.1021/jp200953k

Y.L. Chen, J.H. Li, Z.H. Hong, B. Shen, B.Z. Lin, B.F. Gao, Phys. Chem. Chem. Phys. 16 (2014) 8106–8113. https://doi.org/10.1039/C3CP55191A

S.M. Lyth, Y. Nabae, S. Moriya, S. Kuroki, M. Kakimoto, J. Ozaki, S. Miyata, J. Phys. Chem. C. 113 (2009) 20148–20151. https://doi.org/10.1021/jp907928j

H. Wang, X. Zhang, J. Xie, J. Zhang, P. Ma, B. Pan and Y. Xie, Nanoscale 7 (2015) 5152-5156. https://doi.org/10.1039/C4NR07645A

K. Sathish- Kumar, G. Vázquez-Huerta, A. Rodríguez-Castellanos, H. M. Poggi-Varaldo, O. Solorza-Feria, Int. J. Electrochem. Sci. 7 (2012) 5484–5494. http://www.electrochemsci.org/list12.htm#issue7

Thillai Sivakumar Natarajan, Kalithasan Natarajan, Hari C. Bajaj, Rajesh J. Tayade, J Nanopart Res. 15 (2013) 1-18. https://10.1007/s11051-013-1669-3

X. Zhou, J. Lu, J. Jiang, X. Li, M. Lu, G. Yuan, Z. Wang, M. Zheng and H. J. Seo, Nanoscale Research Letters. 9 (2014) 1-7. https://doi.org/10.1186/1556-276X-9-34

D. Saha, M. M. Desipio, T. J. Hoinkis, E. J. Smeltz, R. Thorpe, D. K. Hensley, S. G. Fischer-Drowos, J. Chen, Journal of Environmental Chemical Engineering 6 (2018) 4927 - 4936. https://doi.org/10.1016/j.jece.2018.07.030

Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu. X. Wang, Phys Chem Chem Phys. 14 (2012) 1455-1462. https://doi.org/10.1039/C41CP22820J




DOI: https://doi.org/10.51316/jca.2022.068

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA