Synthesis and photocatalytic activity of g-C3N4/CdS materials under visible light

Nga Tran Thi Viet, Truong Tran Ngoc Thien, Luong Nguyen Van, Lien Hoang Nu Thuy, Kim Nguyen Van

Abstract


The g-C3N4/CdS composite photocatalysts consisting of cadmium sulfide (CdS) and graphitic carbon nitride g-C3N4) with a different mass ratio of CdS were successfully prepared and denoted as CNCS-1:1, CNCS-1:3, CNCS-1:5. The obtained materials were characterized by X-Ray diffraction (XRD), infrared spectra (IR), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The UV-vis DRS results showed that CNCS-1:1, CNCS-1:3 and CNCS-1:5 materials possess bandgap of around 2.31, 2.25 and 2.28 eV, respectively. The photocatalytic activity of the materials was assessed by degradation of methylene blue (MB) under visible light. Among the three materials, CNCS-1:3 exhibited the highest photocatalytic activity. The enhancement of photocatalytic activity of the CNCS-1:3 (or g-C3N4/CdS) composites compared to single components, g-C3N4 and CdS was observed, which can be attributed to the reduction of combination rate of photogenerated electron – hole pairs in the composites.

Keywords


g-C3N4/CdS; photocatalyst; methylene blue; visible light

Full Text:

PDF

References


L. Huang, R. Gao, L. Xiong, P. Devaraji, W. Chen, X. Li and Li. Mao, RSC Adv., 11, (2021), 12153–12161. https://doi.org/10.1039/D1RA00625H

K. Adachi, K. Ohta, T. Mizuno, S. Energy, 53, (1994), 187–190. https://doi.org/10.1016/0038-092X(94)90480-4

S. Wua, H. Hu, Y. Lin, J. Zhang, Y. H. Hu, Chemical Engineering Journal, 382, (2020), 122842. https://doi.org/10.1016/j.cej.2019.122842

E.S. Elmolla, M. Chaudhuri, Desalination, 252, (2010), 1–3, 46–52. https://doi.org/10.1016/j.desal.2009.11.003

K. Zhang and L. Guo, Catal. Sci. Technol., 3, (2013), 1672–1690. https://doi.org/10.1039/C3CY00018D

Q. Wang, J. Li, Y. Bai, J. Lian, H. Huang, Z. Li, Z. Lei and W. Shangguan, Green Chem., 16, (2014), 2728–2735. https://doi.org/10.1039/C3GC42466A

Y.B. Shao, L.H. Wang and J.H. Huang, RSC Adv., 6, (2016), 84493–84499. https://doi.org/10.1039/C6RA17046C

Y.C. Zhang, J. Li, M. Zhang and D.D. Dionysiou, Environ. Sci. Technol. 45, (2011), 9324–9331. https://doi.org/10.1021/es202012b

W. Wu, R. Lin, L. Shen, R. Liang, R. Yuan and L. Wu, Phys. Chem. Chem. Phys., 15, (2013), 19422–19426. https://doi.org/10.1039/C3CP53195C

M. Imran, M. Ikram, A. Shahzadi, S. Dilpazir, H. Khan, I. Shahzadi, S. Amber Yousaf, S. Ali, J. Geng and Y, RSC Adv., 8, (2018), 18051–18058. https://doi.org/10.1039/C8RA01813H

W. Chen, Y. Wang, M. Liu, L. Gao, L. Mao, Z. Fan, W. Shangguan, Applied Surface Science, 444, (2018), 485–490. https://doi.org/10.1016/j.apsusc.2018.03.068

Y. Chao, J. Zheng, J. Chen, Z. Wang, S. Jia, H. Zhang and Z. Zhu, Catal. Sci. Technol., 7, (2017), 2798–2804. https://doi.org/10.1039/C7CY00964J

N. Soltani, E. Saion, W.M.M. Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. RezaZare, E. Gharibshahi, Solar Energy, 97, (2013), 147–154. https://doi.org/10.1016/j.solener.2013.08.023

Q. Wang, J. Lian, Q. Ma, Y. Bai, J. Tong, J. Zhong, R. Wang, H. Huang and B. Su, New J. Chem., 39, (2015), 7112–7119. https://doi.org/10.1039/C5NJ00987A

L. Ge, F. Zuo, J. Liu, Q. Ma, C. Wang, D. Sun, L. Bartels and P. Feng, Phys. Chem. C, 116, (2012), 13708–13714. https://doi.org/10.1021/jp3041692

S. Bellamkonda and G. RangaRao, Catalysis Today, 321–322, (2019), 18–25. https://doi.org/10.1016/j.cattod.2018.03.025

S.R. Dhag, H.A. Colorado, & T. Hahn, Nanoscale research letters, 2011, 6(1), 1–5. https://doi.org/10.1186/1556-276X-6-420

S.C. Yan, Z.S. Li, & Z.G. Zou, Langmuir, 25, (2009), 10397–10401. https://doi.org/10.1021/la900923z

Minsik Kim, Sohee Hwang and Jong-Sung Yu, J. Mater. Chem., 17, (2007), 1656–1659. https://doi.org/10.1039/B702213A

X. Li, J. Zhang, L. Shen, Y. Ma, W. Lei, Q. Cui & G. Zou., Applied Physics A, 94, (2009), 387–392. https://doi.org/:10.1007/s00339-008-4816-4

Q. Jian, Z. Jin, H. Wang, Y. Zhangabc and G. Wang, Dalton Trans., 48, (2019), 4341–4352. https://doi.org/10.1039/C8DT05110K

X. Li, Mi. Edelmannová, P. Huo & K. Kočí, Journal of Materials Science, 55, (2020), 3299–3313. https://doi.org/:10.1007/s10853-019-04208-x

Y.F. Zhao, Y.P. Sun, X. Yin, R. Chen, G.C. Yin, M.L. Sun, F.C. Jia, and B. Liu, Journal of Nanoscience and Nanotechnology, 20, (2020), 1098–1108. https://doi.org/10.1166/jnn.2020.16984

G. Xin and Y. Meng, Journal of Chemistry, 2013, (2013), 5 pages. https://doi.org/10.1155/2013/187912

Z.L. Fang., H.F. Rong, L.Y. Zhou, & P. Qi, Journal of Materials Science, 50, (2015), 3057–3064. https://doi.org/10.1007/s10853-015-8865-8

M. Lu, Z. Pei, S. Weng, W. Feng, Z. Fang, Z. Zheng, M. Huanga and P. Liu, Physical Chemistry Chemical Physics, 16, (2014), 21280–21288. https://doi.org/10.1039/C4CP02846




DOI: https://doi.org/10.51316/jca.2022.067

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA