Synthesis of bimetallic Ag-Au nanoparticles for surface-enhanced Raman scattering spectroscopy

Mai Nguyen Thi Tuyet, Hoai Hoang Thi Thu, Huy Nguyen Le, Hoai Tran Thanh, Hai Phan Van

Abstract


In this report, bimetallic Au-Ag nanoparticles were successfully prepared by a chemical strategy using binary reduction agents. The metal ratio in bimetallic nanoparticles can be easily tuned by controlling the metal precursor ratio. Using Rhodamine as a probe molecule, we investigated the surface-enhanced Raman scattering (SERS) activity of synthesized bimetallic Au-Ag nanoparticles. The results demonstrate that our materials allow to enhance about 2×106 times the Raman signal of Rhodamine. Hence, the combination of unique features of two plasmonic metals opens up exciting prospects for the design of an ultra-sensitive sensor based on SERS.

Keywords


bimetallic nanoparticles; plasmonic; SERS; sensor

Full Text:

PDF

References


M. Fleischmann, P. J. Hendra, A. J. McQuillan, Chemical Physics Letters 26 (1974) 163-166. http://dx.doi.org/10.1016/0009-2614(74)85388-1

A. J. McQuillan, Notes and Records of the Royal Society 63 (2009) 105-109. https://doi.org/10.1098/rsnr.2008.0032

C. Wang, D. Astruc, Chemical Society Reviews 43 (2014) 7188-7216. https://doi.org/10.1039/C4CS00145A

L. Jiang, G. Niu, H. Wu, J. Zhao, Y. Liu, Z. Xie, Q. Yao, W. Yu, W. Ren, G. Zhao, ACS Applied Nano Materials 4 (2021) 8972-8978. https://doi.org/10.1021/acsanm.1c01574

B. Liu, K. Wang, B. Gao, J. Lu, H. Li, X. Zhao, ACS Applied Nano Materials 2 (2019) 3177-3186. https://doi.org/10.1021/acsanm.9b00492

D. Jana, A. Mandal, G. De, ACS Applied Materials & Interfaces 4 (2012) 3330-3334. https://doi.org/10.1021/am300781h

M. Liu, ACS Omega 5 (2020) 32655-32659. https://doi.org/10.1021/acsomega.0c05021

R. Nisticò, P. Rivolo, C. Novara, F. Giorgis, Colloids and Surfaces A: Physicochemical and Engineering Aspects 578 (2019) 123600. https://doi.org/10.1016/j.colsurfa.2019.123600

H. Ma, L. Xu, Y. Tian, A. Jiao, M. Zhang, S. Li, M. Chen, Optical Materials Express 11 (2021) 2001. https://doi.org/10.1364/ome.430061

W. Yin, L. Wu, F. Ding, Q. Li, P. Wang, J. Li, Z. Lu, H. Han, Sensors and Actuators B: Chemical 258 (2018) 566-573. https://doi.org/10.1016/j.snb.2017.11.141

J. Wang, J. Li, C. Zeng, Q. Qu, M. Wang, W. Qi, R. Su, Z. He, ACS Appl Mater Interfaces 12 (2020) 4699-4706. https://doi.org/10.1021/acsami.9b16773

M. Nguyen, A. Kanaev, X. Sun, E. Lacaze, S. Lau-Truong, A. Lamouri, J. Aubard, N. Felidj, C. Mangeney, Langmuir 31 (2015) 12830-7. https://doi.org/10.1021/acs.langmuir.5b03339

K. Yu, X. Sun, L. Pan, T. Liu, A. Liu, G. Chen, Y. Huang, Nanomaterials (Basel) 7 (2017) https://doi.org/10.3390/nano7090255

K. Sytwu, M. Vadai, J. A. Dionne, Advances in Physics: X 4 (2019) 1619480. https://doi.org/10.1080/23746149.2019.1619480

L. Thi Dang, H. Le Nguyen, H. Van Pham, M. T. T. Nguyen, Nanotechnology 33 (2021) https://doi.org/10.1088/1361-6528/ac201a

S. Link, Z. L. Wang, M. A. El-Sayed, The Journal of Physical Chemistry B 103 (1999) 3529-3533. https://doi.org/10.1021/jp990387w

K. Kim, K. L. Kim, J.-Y. Choi, H. B. Lee, K. S. Shin, The Journal of Physical Chemistry C 114 (2010) 3448-3453. https://doi.org/10.1021/jp9112624

L. Sun, Y. Yin, P. Lv, W. Su, L. Zhang, RSC Advances 8 (2018) 3964-3973. https://doi.org/10.1039/C7RA13650A

C. H. Sun, M. L. Wang, Q. Feng, W. Liu, C. X. Xu, Russian Journal of Physical Chemistry A 89 (2015) 291-296. https://doi.org/10.1134/S0036024415020338




DOI: https://doi.org/10.51316/jca.2022.063

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA