Photocatalysis degradation of 2,4-dichlorophenoxyacetic acid in water environment using synthesized TiO2 nanoparticles

Dung Le Thi, Loan Nguyen Quynh, Thang Nguyen Duc, Son Le Thanh, Duc Pham Tien

Abstract


The present study investigated the photodegradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) in a water environment using synthesized titania nanoparticles (TiO2-NPs). The TiO2-NPs fabricated by sol-gel method were distinguished by X-ray diffraction (XRD) and Transmission electron microscopy (TEM), Infrared spectroscopy (IR), and zeta potential measurements. The results indicated that TiO2 - NPs were nanospheres of appropriately 30nm with a major anatase phase. Synthesized TiO2-NPs have the point of zero charge (PZC) of around 6.0. The efficient conditions for photocatalysis degradation of 2,4-D under sunlight were considered and found to be 120 min, pH 11, and 1 mM KCl. Under ideal conditions, the photodegradation efficiency of 2,4-D reached greater than 72 %. Our results suggest that TiO2-NPs would be promisingly applied for eliminating 2,4-D from an aqueous solution.

Keywords


2,4-D; TiO2; nanomaterial; photocatalysis

Full Text:

PDF

References


De Castro Marcato, A.C., C.P. de Souza, and C.S. Fontanetti, Water, Air, & Soil Pollution 228-3 (2017) 120. http://doi.org/10.1007/s11270-017-3301-0.

Islam, F., et al., Environment international 111 (2017) 332-351. http://doi.org/10.1016/j.envint.2017.10.020

Ebrahimi, R., et al., Journal of Inorganic and Organometallic Polymers and Materials 30-3 (2020) 923-934. http://doi.org/10.1007/s10904-019-01280-3

Germaine, K., et al., FEMS microbiology ecology 57 (2006) 302-310. https://doi.org/ 10.1111/j.1574-6941.2006.00121.

Abdennouri, M., et al., Journal of Saudi Chemical Society, 19-5 (2015) 485-493. https://doi.org/10.1016/j.jscs.2015.06.007

Liu, L., et al., Chemical Engineering Journal,. 181-182 (2011) 189-195. https://doi.org/10.1016/j.cej.2011.11.060

Tsydenova, O., V. Batoev, and A. Batoeva, International journal of environmental research and public health 12 (2015) 9542-9561. https://doi.org/10.3390/ijerph120809542

Wang, J. and R. Zhuan, Science of The Total Environment, 701 (2020) 135023. https://doi.org/10.1016/j.scitotenv.2019.135023

Nguyen, V.-H., et al., Arabian Journal of Chemistry, 13 (2020) 8309-8667 https://doi.org/10.1016/j.arabjc.2020.04.028

Wen, J., et al., Chinese Journal of Catalysis,. 36 (12) (2015) 2049-2070. https://doi.org/10.1016/S1872-2067(15)60999-8

Dao, H., et al., Environmental Earth Sciences, 77 (2018) 359. https://doi.org/10.1007/s12665-018-7550-z

Nakata, K. and A. Fujishima, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3) (2012) 169-189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

Paz, Y., Applied Catalysis B: Environmental, 99 (2010) 448-460. https://doi.org/10.1016/j.apcatb.2010.05.011

Crisan, M., et al., Journal of Dispersion Science and Technology 24 (2003) 129–144. https://doi.org/10.1081/DIS-120017952

Kosmulski, M., Journal of colloid and interface science,. 353 (2011) 1-15. https://doi.org/10.1016/j.jcis.2010.08.023

Bian, X., J. Chen, and R. Ji, Materials,. 6 - 4 (2013) 1530-1542. https://doi.org/ 10.3390/ma6041530




DOI: https://doi.org/10.51316/jca.2022.048

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA