Low-temperature hydrothermal synthesis of BiPO4 for Rhodamine B removal

Van Nguyen Duc, Anh Doan Tuan

Abstract


The synthesis and Rhodamine B removal efficiency of monazite monoclinic BiPO4 by hydrothermal route using Bi(NO3)3·5H2O, K2HPO4·3H2O and HNO3 as staring materials were presented in this work. The obtained samples were characterized by X-ray powder diffraction, high-resolution transmission field-emission scanning electron microscopy and diffuse reflectance UV-Vis spectrometry. The results showed that, by selecting suitable reaction parameters, the pure monazite monoclinic phase of BiPO4 was received readily at hydrothermal temperature as low as 130 oC, considerably lower than that reported previously. The obtained monazite monoclinic phase of BiPO4 powders exhibited a high removal efficiency of 96% for 150 min under 365nm-UV irradiation. The mechanism of the Rhodamine B photodegradation reaction over the synthesized monazite monoclinic BiPO4 was also proposed.


Keywords


BiPO4; Photocatalysis; Rhodamine B; Hydrothermal method

Full Text:

PDF

References


A. D. Paola, E. García-López, G. Marcì, L. Palmisano, J. Hazard. Mater. 211-212 (2012) 3-29. https://doi.org/10.1016/j.jhazmat.2011.11.050

H. K. Timmaji, Bismuth – based oxide semiconductors: mild and practical applications, Ph. D dissertation, The Univeristy of Texas at Arlington, 2011.

C. M. Suarez, M. Hernandez, N. Russo, Appl. Catal. A-General 504 (2015) 158-170. https://doi.org/10.1016/j.apcata.2014.11.044

G. K. Tripathi, R. Kurchania, Opt. Quant. Electron. 49 (2017) 203-219. https://doi.org/10.1007/s11082-017-1042-3

G. Li, Y. Ding, Y. Zhang, Z. Lu, H. Sun, R. Chen, J. Colloid Interface Sci., 363 (2011) 497-503. https://doi.org/10.1016/j.jcis.2011.07.090

L. She, G. Tan, H. Ren, J. Huang, C. Xu, A. Xia, RSC Adv., 5 (2015) 36642-36651. https://doi.org/10.1039/C5RA02629F

X. Tian, T. Xu, Y. Wang, S. Meng, RSC Adv., 7, (2017) 36705-36713. https://doi.org/10.1039/C7RA06560D

C. Pan, Y. Zhu, Environ. Sci. Technol., 44 (2010) 5570-5574.

https://doi.org/10.1021/es101223n

C. Pan, D. Li, X. Ma, Y. Chen, Y. Zhu, Catal. Sci. Technol., 1 (2011) 1399-1405. https://doi.org/10.1039/C1CY00261A

G. Liu, S. Liu, Q. Lu, H. Sun, Z. Xiu, Ind. Eng. Chem. Res., 53 (2014) 13023-13029. https://doi.org/10.1021/ie4044357

F. Xue, H. Li, Y. Zhu, S. Xiong, X. Zhang, T. Wang, X. Liang, Y. Qian, J. Solid State Chem., 182 (2009) 1396-1400.

https://doi.org/10.1016/j.jssc.2009.02.031

J. Wang, J. Li, H. Li, S. Duan, S. Meng, X. Fu, S. Chen, Chem. Eng. J., 330 (2017) 433-441. https://doi.org/10.1016/j.cej.2017.07.121

Nguyen Duc Van, Ceram. Int., 45 (2019) 1447-1449. https://doi.org/10.1016/j.ceramint.2018.09.264

Y. Zhang, R. Selvaraj, M. Sillanpää, Y. Kim, C.-W. Tai, Chem. Eng. J., 245 (2014) 117-123. https://doi.org/10.1016/j.cej.2014.02.028

L. Li, J. Xu, C. Guo, Y. Zhang, Front. Environ. Sci. Eng., 7 (2013) 382-387. https://doi.org/10.1007/s11783-013-0504-5

A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B-Environ., 31 (2001) 145-157.

https://doi.org/10.1016/S0926-3373(00)00276-9

Nguyen Duc Van, Ceram. Int., 44 (2018) 19945-19949. https://doi.org/10.1016/j.ceramint.2018.07.260




DOI: https://doi.org/10.51316/jca.2022.046

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA