Study on the synthesis of g-C3N4/CoFe2O4/Reduced graphene oxide material and its application as photocatalyst

Tram Pham Thi Le, Ha Nguyen Thi, Hoang Do Thi Phuong, Huy Nguyen Minh, Minh Nguyen Ngoc, Phuong Diep Thi Lan, Phuong Tran Thi Thu, Nghia Nguyen Thi, Thanh Huynh Thi Minh, Linh Bui Thi Ngoc, Thien Nguyen Duc, Hoan Nguyen Thi Vuong

Abstract


In this study, the g-C3N4/CoFe2O4/Reduced graphene oxide composites were successfully synthesized by the co-precipitation method combined with mixed phase mixture. The obtained results from characterization methods such as XRD, SEM, FT-IR, EDX,… showed that the composite has a high structure and crystallinity, and spinel ferrite particles were dispersed fairly evenly onto reduced graphene oxide sheets as well as layers of g-C3N4. The existence of Co/Fe-O and Co-O-C bonds in materials was determined. The photocatalytic activity of g-C3N4/CoFe2O4/Reduced graphene oxide (GCN/CF-rGO) was estimated through the degradation of Tetracycline (TC) in aqueous solution. TC decomposition efficiency is up to 95% after 240 minutes of reaction and is higher than that of each component material. GCN/CF-rGO is a potential catalyst for effective application in TC decomposition reaction under visible light and has the ability to implement treatment in practice.


Keywords


Ferrite; reduced graphene oxide; g-C3N4/CoFe2O4/reduced graphene oxide; photocatalyst

Full Text:

PDF

References


K. S. Noveselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,…and A. A. Firsov, Science 306 (2004) 666. https://10.1126/science.1102896

Balandin A.A., Ghosh S., Bao W., Calizo I., Teweldebrhar D., Miao F., and Lau C.N., , Nano lett 8 3 (2008) 902-7. https://10.1021/nl0731872

Wang H., Cui L-F., Yang Y., Casalongue H.S., Robinson J.T., Liang Y., Cui Y., and Dai H., J. Am. Chem. Soc 132 (2010) 13978. https://doi.org/10.1021/ja105296a

Lu C.H., Yang H.H., Zhu C.L., Chen X., and Chen N., Angewandte Chem. Int. Edn 48 (2009) 4785. https://doi/10.1002/anie.200901479

Sun X., Liu Z., Welsher K., Robinson J., Goodvin A., Zaric S., and Dai H., Nano Res 1 (2008) 203. https://doi.org/10.1007/s12274-008-8021-8

6. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, Science 320 (2008) 1308. https://doi.org/10.1126/science.1156965

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev 95 (1995) 69. https://doi.org/10.1021/cr00033a004

Y. Gong, X. Quan, H. Yu,... Applied Catalysis B: Environmental 237 (2018) 947-956 . https://doi.org/10.1016/j.apcatb.2018.06.060

Y. Song, J. Gu, K. Xia, J. Yi, H. Chen,…, Applied Surface Science 467-468 (2019) 56-64. http://doi.org/10.1016/j.apsusc.2018.10.118

G. Long, J. Ding, L. Xie, R. Sun, M. Chen,..., Applied Surface Science 455 (2018) 1010-1018. http://dx.doi.org/10.1016/j.apsusc.2018.09.217

Oscar F. Odio and Edilso Reguera, Nanomagnetism and Environmental Applications. https://doi.org/10.5772/67513

Kumbhar, V.S.; Jagadale, A.D.; Shinde, N.M.; Lokhande, C.D., Applied Surface Science 259 (2012) 39-43. https://doi.org/10.1016/j.apsusc.2012.06.034

S. Sun and Hao.Zeng, , IBM, T. J, Watson Reseach Center, Yorktown Heights, New York (2002). https://doi.org/10.1021/ja026501x

Shurming Nier, Yun sing, Gloria J Kim and Ronathan W. Simon, Rew. Biomed. Eng 9 (2007) 257-88. https://doi.org/10.1021/ab500179h

Wu L, Mendoza-Garcia A, Li Q, Sun S. Chem. Rev 116 18 (2016) 10473–10512. https://doi.org/10.1021/acs.chemrev.5b00687

Kharisov BI, Dias HVR, Kharissova OV. Arab. J. Chem. (2014). https://doi.org/10.1016/j.arabjc.2014.10.049

W.S. Hummers Jr., R. E. Offerman. Journal of the American Chemical Society 80 (1958) 1339-1339. https://dx.doi.org/10.1021/ja01539a017

Boukhvalov, D.W., The Journal of Physical Chemistry C 118 47 (2020) 27594-27598. https://doi.org/10.1021/jp509659p

C.L. Rodríguez, D.R.Padrón, Z.A. Alothman, M. Cano, Juan J. G.Casares, … and Rafael Luque, Nanoscale 12 (2020) 8477-8484. https://doi.org/10.1039/D0NR00818D

Qian Xu, Peng Zhao, Yu-Kun Shi, Jian-Sheng Li, Wan-Sheng You, Lan-Cui Zhang and Xiao-Jing Sang, New J. Chem (2020). https://doi.org/10.1039/D0NJ01122C

S. Huang, Y. Xu, M. Xie, H. Xu, M. He , J. Xia, L.Huang , H. Li, J. Colloids and Surfaces A: Physicochem. Eng. Aspects 478 (2015) 71–80. http://dx.doi.org/10.1016%2Fj.colsurfa.2015.03.035

S. Shanavas, S. M. Roopan, A. Priyadharsan, D. Devipriya,… (2019). Applied Catalysis B: Environmental. http://doi.org/10.1016/j.apcatb.2019.117758

Du X., Zhou C., Liu H.-Y., Mai Y.W. and Wang G., , 241 (2013) 460-466.

Chua C. K., Pumera M., , Chem. Soc. Rev.43 (2014) 291-312. https://doi.org/10.1039/C3CS60303B

Pei S., Cheng H. M., (2012), 50, 3210-3228. https://doi.org/10.1016/j.carbon.2011.11.010

N. Chandela, S. Sharmaa, V. Duttaa, P. Raizadaa, A. H. Bandegharaeic, R. Kumare,... Pardeep Singh, (2020). https:/ 10.5004/dwt.2020.25713

Yang J., Jo M. R., Kang M., Huh Y. S., Jung H. and Kang Y.M., Carbon 73 (2014) 106-113. https://doi.org/10.1186/s11671-015-1031-z

Mei Zhang, MengqiuJia, Journal of Alloys and Compounds 551 (2013) 53–60. https://doi.org/10.1021/acsami.5b01503

H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2 (2008) 463. https://doi.org/10.1021/nn700375n

Nigam P., Armour G., Banat I., Singh D. and Marchant R., Bioresource technology 72 (2000), 219-226. https://doi.org/10.1016/S0960-8524(99)00123-6

Suwanchawalit C. and Somjit V., J. Nanomater. Biostruc, 10 (2015) 769-777. http://dx.doi.org/10.1016%2Fj.apsusc.2015.05.130

Nguyễn Thị Vương Hoàn và cộng sự, Nghiên cứu tổng hợp nanocomposite MFe2O4 (M = Fe, Co, Ni)/ graphen và vật liệu trên cơ sở graphen biến tính ứng dụng trong xử lý môi trường và cảm biến điện hóa (2020). B2019-DQN-562-03.

Nguyen Thi Vuong Hoan, Nguyen Thi Anh Thu, Nguyen Đuc Cuong, Hoang Van Duc, Đinh Quang Khieu, Vo Vien, Journal of Chemistry Volume (2016) http://dx.doi.org/10.1155/2016/2418172.

Samoilova, R.I., A.R. Crofts, and S.A. Dikanov, The Journal of Physical Chemistry A 115 42 (2014) 11589-11593. https://doi.org/10.1021/jp204891n.

Zang, Y., Li, L., Li, X., Lin, R., & Li, G., Chemical Engineering Journal 246 (2014) 277-286. https://doi.org/10.1016/j.cej.2014.02.068.

Devina Rattan Paul, Shubham Gautam, Priyanka Panchal, Satya Pal Nehra, Pratibha Choudhary, and Anshu Sharma, ACS Omega 5 (2020) 3828-3838. https://dx.doi.org/10.1021%2Facsomega.9b02688.

Yanwu Zhu, Shanthi Murali, Weiwei Cai, Xuesong Li, Ji Won Suk, Jeffrey R. Potts, Rodney S. Ruoff, Adv. Mater 22 (2010) 5226-5226. https://doi.org/10.1002/adma.201001068

Yi Shen, Qile Fang, and Baoliang Chen,. Sci. Technol 49 (2015) 67-84. https://doi.org/10.1021/es504421y.

S. Suresh, A. Prakash, D. Bahadur, Journal of Magnetism and Magnetic Materials (2017), http://dx.doi.org/10.1016/j.jmmm.2017. 08.034.

Y. Fang, R. Wang, G. Jiang, H. Jin, Y. Wang, X. Sun, Wang and T. Wang,. Bull. Mates. Sci 35 (2012) 495-499. https://www.ias.ac.in/article/fulltext/boms/035/04/0495-0499

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff 39 1 (2010) 228-240. https://doi.org/10.1039/B917103G.

S. Wang, H. Sun, H.-M. Ang, and M. Tadé, Chemical engineering journal, 226 (2013) 336-347. https://doi.org/10.1016/j.cej.2013.04.070.




DOI: https://doi.org/10.51316/jca.2022.034

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA