Synthesis and evaluation of catalytic activities in rhodamine B degraded reaction by H2O2 of MIL-53(Al) dopping with iron

Tuan-Anh Huynh, Nghi Nguyen Huu, Duyen Pham Thi Hong, Du Pham Dinh

Abstract


In the present study, MIL-53(Al) metal-organic framework material dopping with iron (denoted as Fe-MIL-53(Al)) had been synthesized and applied as a catalyst to degrade rhodamine B (RB) in aqueous solution by H2O2. The obtained materials were characterized using X-ray diffraction (XRD), thermogravimetry analysis (TG), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX). The influence of iron content on the structure of MIL-53(Al) and treated temperature of Fe-MIL-53(Al) were investigated. The results showed that the obtained Fe-MIL-53(Al), which was synthesized at mole ratio of Fe/Al = 1/9, had high catalytic activity for RB oxidation reaction by H2O2, RB degradation efficiency was 92%, and achieved 100% under UV radiation ([RB] = 10 mg/L). The treatment at 280 ºC had almost no effect on the structure of the material, but also slightly enhanced the catalytic activity.


Keywords


Fe-MIL-53(Al); Metal-organic; framework; Rhodamine B; Degradation

Full Text:

PDF

References


G. Férey, Chem. Soc. Rev. 37 (2008) 191-214. https://doi.org/10.1039/B618320B

P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couveur, G. Férey, R.E. Morris, C. Serre, Chem. Rev. 112 (2012) 1232-1268. https://doi.org/10.1021/cr200256v

Y. He, W. Zhou, G. Qian, B. Chen, Chem. Soc. Rev. 43 (2014) 5657-5678. https://doi.org/10.1039/C4CS00032C

E. Barea, C. Montoro, J.A.R. Navarro, Chem. Soc. Rev. 43 (2014) 5419-5430. https://doi.org/10.1039/C3CS60475F

V. Stavila, A.A. Talin, M.D. Allendorf, Chem. Soc. Rev. 43 (2014) 5994-6010. https://doi.org/10.1039/C4CS00096J

M. Hu, H. Lou, X. Yan, X. Hu, R. Feng, M. Zhou, Micropor. Mesopor. Mat. 271 (2018) 68-72. https://doi.org/10.1016/j.micromeso.2018.05.048

D.Q. Khieu, M.T. Thanh, T.V. Thien, N.H. Phong, D.H. Van, P.D. Du and N.P. Hung, Journal of Chemistry Article ID 5395106 (2018) 12 pages. https://doi.org/10.1155/2018/5395106

Q. Wang, Y. Sun, S. Li, P. Zhang and Q. Yao, RSC Adv. 10 (2020) 37600-37620. https://doi.org/10.1039/D0RA07950B

Y. Fu, M. Xin, J. Chong, R. Li, and M. Huang, J. Mater Sci. 56 (2021) 4151-4160. https://doi.org/10.1007/s10853-020-05507-4

A.J.M. Reddy, N.K. Katari, P. Nagaraju, K.H. Reddy, and M.S.S. Babu, J. Mater Sci.: Mater Electron (2021). https://doi.org/10.1007/s10854-021-05507-3

S. Naeimi, H. Faghihian, Environmental Toxicology and Pharmacology 53 (2017) 121-132. https://doi.org/10.1016/j.etap.2017.05.007

T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, B. Moulin, D. Heurtaux, G. Clet, A. Vimont, J.M. Grenèche, B.L. Ouay, F. Moreau, E. Magnier, Y. Filinchuk, J. Marrot, J.C. Lavalley, M. Daturi, and G. Férey, J. Am. Chem. Soc. 132 (2010) 1127-1136. https://doi.org/10.1021/ja9092715

J. Gordon, H. Kazemian, S. Rohani, Micropor. Mesopor. Mat. 162 (2012) 36-43. https://doi.org/10.1016/j.micromeso.2012.06.009

I. Chen, J.P.S. Mowat, D.F. Jimenez, C.A. Morrison, S.P. Thompson, P.A. Wright, and T. Düren, J. Am. Chem. Soc. 135 (2013) 15763-15773. https://doi.org/10.1021/ja403453g

T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, and G. Férey, Chem. Eur. J. 10 (2004) 1373-1382. https://doi.org/10.1002/chem.200305413

T.K. Trung, P. Trens, N. Tanchoux, S. Bourrelly, P.L. Llewellyn, S. Loera-Serna, C. Serre, T. Loiseau, F. Fajula, and G. Férey, J. Am. Chem. Soc. 130 (2008) 16926-16932. https://doi.org/10.1021/ja8039579

D.V. Patil, P.B.S. Rallapalli, G.P. Dangi, R.J. Tayade, R.S. Somani, and H.C. Bajaj, Ind. Eng. Chem. Res. 50 (2011) 10516-10524. https://doi.org/10.1021/ie200429f

V.I. Isaeva, M.D. Vedenyapina, S.A. Kulaishin, A.A. Lobova, V.V. Chernyshev, G.I. Kapustin, O.P. Tkachenko, V.V. Vergun, D.A. Arkhipov, V.D. Nissenbaum, and L.M. Kustuv, Dalton Trans. 48 (2019) 15091-15104. https://doi.org/10.1039/C9DT03037A

X. Qian, B. Yadian, R. Wu, Y. Long, K. Zhou, B. Zhu, Y. Huang, International Journal of Hydrogen Energy 38 (2013) 16710-16715. https://doi.org/10.1016/j.ijhydene.2013.07.054

Y. Podkovyrina, V. Butova, E. Bulanova, A. Budnyk, M. Kremennaya, A. Soldatov, C. Lamberti, Journal of Physics: Conf. Series 987 (2018) 012-031. Applied Nanotechnology and Nanoscience International Conference 2017 (ANNIC 2017) 18–20 October 2017, Rome, Italy.

M.T. Thanh, T.V. Thien, P.D. Du, N.P. Hung, D.Q. Khieu, J. Porous Mater. 25 (2018) 857-869. https://doi.org/10.1007/s10934-017-0498-7

E. Rahmani, and M. Rahmani, Ind. Eng. Chem. Res. 57(1) (2018) 169-178. https://doi.org/10.1021/acs.iecr.7b04206

D. Huang, Y. Liu, Y. Liu, Y. Liu, D. Di, H. Wang, W. Yang, New J. Chem. 43 (2019) 7243-7250. https://doi.org/10.1039/C9NJ00433E

X. Chen, Z. Xue, Y. Yao, W. Wang, F. Zhu, and C. Hong, Hindawi International Journal of Photoenergy Article ID 754691 (2012) 5 pages. https://doi.org/10.1155/2012/754691

J.J. Du, Y.P. Yuan, J.X. Sun, F.M. Peng, X. Jiang, L.G. Qiu, A.J. Xie, Y.H. Shen, J.F. Zhu, Journal of Hazardous Materials 190 (2011) 945-951. https://doi.org/10.1016/j.jhazmat.2011.04.029

P. Rallapalli, D. Patil, K.P. Prasanth, R.S. Somani, R.V. Jasra, H.C. Bajaj, J. Porous Mater. 17 (2010) 523-528. https://doi.org/10.1007/s10934-009-9320-5

C.M. Moran, J.N. Joshi, R.M. Marti, S.E. Hayes, and K.S. Walton, J. Am. Chem. Soc. 140(29) (2018) 9148-9153. https://doi.org/10.1021/jacs.8b04369

J.F. Liu, J.C. Mu, R.X. Qin, S.F. Ji, Petroleum Science 16 (2019) 901-911. https://doi.org/10.1007/s12182-019-0334-6




DOI: https://doi.org/10.51316/jca.2022.026

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA