PtRu, PtRuFe and PtRuNi alloy electrocatalysts decorated on composite support C-MWCNTs for direct methanol fuel cells

Quan Dang Long, An Nguyen Minh, Vinh Thach Phuc, Ngan Nguyen Thi Thanh, Lil Owin Khưu, Niem Le Phuong, Tu Do Cam, Truong Vu Xuan, Phuoc Le Huu

Abstract


In this work, carbon Vulcan XC-72 (C) and carbon nanotubes (CNTs) supported ternary platinum-ruthenium-iron (PtRuFe) and platinum-ruthenium-nickel (PtRuNi) alloy nanoparticles have been synthesized by a co-reduction method. The catalyst samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and cyclic voltammetry (CV). The results show that ternary alloy catalysts are always better than binary alloy catalysts. In particular, PtRuNi is the best catalyst for methanol oxidation reaction. 


Keywords


Composite support; cyclic voltammetry; electrocatalyst; methanol oxidation; nanoparticle

Full Text:

PDF

References


T. S. Almeida, C. Garbim, R. G. Silva, A. R. De Andrade, J. Electroanal. Chem 796 (2017) 49-56. https://doi.org/10.1016/j.jelechem.2017.04.039.

C. Zhang, X. Shen, Y. Pan, Z. Peng, Front. Energy 11(3) (2017) 268-285. https://doi.org/10.1007/s11708-017-0466-6.

N. Seselj, C. Engelbrekt, J. Zhang, Sci. Bull. 60(9) (2015) 864-876. https://doi.org/10.1007/s11434-015-0745-8.

D. Li, C. Wang, D. S. Strmcnik, D. V. Tripkovic, X. Sun, Y. Kang, M. Chi, J. D. Snyder, D. van der Vliet, Y. Tsai, V. R. Stamenkovic, S. Sun, N. M. Markovic, Energy Environ. Sci 7(12) (2014) 4061-4069. https://doi.org/10.1039/c4ee01564a.

G. Andreadis, P. Tsiakaras, Chem. Eng. Sci 61(22) (2006) 7497-7508. https://doi.org/10.1016/j.ces.2006.08.028.

Y. Hao, X. Wang, J. Shen, J. Yuan, A. J. Wang, L. Niu, S. Huang, Nanotechnology 27(14) (2016) 145602. https://doi.org/10.1088/0957-4484/27/14/145602.

D. J. Suh, C. Kwak, J. H. Kim, S. M. Kwon, T. J. Park, J. Power Sources 142(1-2) (2005) 70-74. https://doi.org/10.1016/j.jpowsour.2004.09.012.

T. Y. Chen, T. J. M. Luo, Y. W. Yang, Y. C. Wei, K. W. Wang, T. L. Lin, T. C. Wen, C. H. Lee, J. Phys. Chem. C 116(12) (2012) 16969–16978. https://doi.org/10.1021/jp3017419.

J. H. Jang, E. Lee, J. Park, G. Kim, S. Hong, Y. U. Kwon, Sci. Rep 3 (2013) 2782. https://doi.org/10.1038/srep02872.

H. Feng, J. Ma, Z. Hu, J. Mater. Chem 20(9) (2010) 1702-1708. https://doi.org/10.1039/b915667d.

M. Xu, Y. Zhao, H. Chen, W. Ni, M. Liu, S. Huo, L. Wu, X. Zang, Z. Yang, Y. M. Yan, ChemElectroChem

(8) (2019) 2316-2323. https://doi.org/10.1002/celc.201900332.

S. Kadkhodaei, A. van de Walle, Acta Mater. 147 (2018) 296-303. https://doi.org/10.1016/j.actamat.2018.01.025.

M. Filipa, S. Todorova, M. Shopska, M. Ciobanua, F. Papaa, S. Somacescua, C. Munteanua, V. Parvulescu, Catal. Today 306 (2018) 138-144. https://doi.org/10.1016/j.cattod.2017.02.013.

X. Jina, C. Zenga, W. Yana, M. Zhaoa, P. Bobbaa, H. Shi, P. S. Thapac, B. Subramaniama, R. V. Chaudhari, Appl. Catal. A–Gen 534 (2017), 46-57. https://doi.org/10.1016/j.apcata.2017.01.021.

D Kaewsai, M Hunsom, Nanomaterials 8(5), 299. https://doi.org/10.3390/nano8050299.

L. Lu, S. Chen, S. Thota, X. Wang, Y. Wang, S. Zou, J. Fan, J. Zhao, J. Phys. Chem. C 121(36) (2017) 19796–19806. https://doi.org/10.1021/acs.jpcc.7b05629.

N. K. Chaudhari, Y. Hong, B. Kim, S. I. Choi, K. Lee, J. Mater. Chem A 7(29) 2019 17183-17203. https://doi.org/10.1039/C9TA05309C.

X. Ren, Q. Lv, L. Liu, B. Liu, Y. Wang, A. Liu, G. Wu, Sustain. Energy Fuels 4(1) (2020) 15-30. https://doi.org/10.1039/C9SE00460B.

N. Jung, D. Y. Chung, J. Ryu, S. J. Yoo, Y. E. Sung, Nano Today 9(4) (2014) 433-456. https://doi.org/10.1016/j.nantod.2014.06.006.

Y. Luo, N. Alonso-Vante, Electrochim. Acta 179 (2015) 108-118. https://doi.org/10.1016/j.electacta.2015.04.098.

W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, J. Phys. Chem. B 107(26) (2003) 6292-62992003. https://doi.org/10.1021/jp022505c.

Z. Q. Tian, S. P. Jiang, Y. M. Liang, P. K. Shen, J. Phys. Chem. B 110(11) (2006) 5343-5350. https://doi.org/10.1021/jp056401o.

L. Li, Y. Xing, J. Power Sources 178(1) (2008) 75-79. https://doi.org/10.1016/j.jpowsour.2007.12.002.

T. V. Mẫn, T. H. Q. Anh, L. M. L. Phụng, N. M. Tuấn, Tạp chí Hóa học, 49 (5AB) (2011) 380-387.

H. T. An, D. N. Phúc, N. T. P. Thoa, T. V. Mẫn, Tạp chí Khoa học và Công nghệ 51 (5A) (2013) 17-27.

Đ. C. Linh, P. T. San, G. H. Thái, N. N. Phong, T. V. Quân, Tạp chí Hóa học 2 (51) (2013) 39-44.

H. A. Huy, T. V. Man, H. T. Tai, H. T. T. Van, Tạp chí Khoa học và Công nghệ, 54 (4B) (2016) 472-482.

V. T. H. Phuong, T. V. Man, L. M. L. Phung, Vietnam Journal of Science and Technology, 56 (2A) (2018) 81-88.




DOI: https://doi.org/10.51316/jca.2022.014

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA