Green biofuel production via cracking process of waste cooking oil using spent fluid catalytic cracking (SFCC) catalyst

Huu Thinh Tran, Nguyen Le-Phuc, Nhat Huy Nguyen, Tri Van Tran, Thien Thanh Phan, Phuong Thuy Ngo, Quan Luu Manh Ha, Thuy Ngoc Luong, Tuan Trung Phan

Abstract


Waste Cooking Oil (WCO) can be a alternative for petroleum-based fuel. In this work, green biofuel was produced via cracking process of high acid value (AV) waste cooking oils (WCOs) over spent fluid catalytic cracking (SFCC) catalyst collected from Binh Son Refireny. The influences of temperature (450 – 520°C), catalyst-to-WCO ratio (1.5 – 3.5), and acid value (6 - 22 mgKOH/g) have been examined. At 520°C, WCOs can be converted to liquid fuels with the near zero AV (AV < 0.5 mgKOH/g) which is independent of AV of WCOs. In all cases, the total yield of profitable products, gasoline-diesel-LPG, reaches 85 wt%, with only 5 - 7 wt% of coke yield. This study demonstrated the simultaneous utilization of multiple hazardous substances, SFCC catalyst and WCOs, as low-cost raw materials for biofuel production.


Keywords


Waste cooking oil; FCC process; Spent FCC catalyst; High acid value; Biofuel

Full Text:

PDF

References


N. Mansir, S.H. Teo, U. Rashid, M.I. Saiman, Y.P. Tan, G.A. Alsultan, Y.H. TaufiqYap, Modified waste egg-shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review, Renew. Sustain. Energy Rev. 82 (2018) 3645-3655. https://doi.org/10.1016/j.rser.2017.10.098

H.S. Na, D.W. Jeong, W.J. Jang, J.O. Shim, H.S. Roh, The effect of preparation method on Fe/Al/Cu oxyde-based catalyst performance for high temperature water gas shift reaction using simulated waste-derived synthesis gas, Int. J. Hydrogen Energy 40 (2015) 12268-12274. https://doi.org/10.1016/j.ijhydene.2015.07.060

D.S. Patle, S. Sharma, Z. Ahmad, G.P. Rangaiah, Multi-objective optimization of two alkali catalyzed processes for biodiesel from waste cooking oil, Energy Convers. Manag. 85 (2014) 361-372. https://doi.org/10.1016/j.enconman.2014.05.034

H. Amani, Z. Ahmad, B.H. Hameed, Highly active alumina-supported CseZr mixed oxyde catalysts for low-temperature transesterification of waste cooking oil, Appl Catal A-Gen. 487 (2014) 16-25. https://doi.org/10.1016/j.apcata.2014.08.038

A. Galadima, O. Muraza, Biodiesel production from algae by using heterogeneous catalysts: a critical review, Energy J. 78 (2014) 72-83. https://doi.org/10.1016/j.energy.2014.06.018

P. Nautiyal, K.A. Subramanian, M.G. Dastidar, Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extractionetransesterification process, Fuel 135 (2014) 228-234. https://doi.org/10.1016/j.fuel.2014.06.063

Zahira Yaakob, Masita Mohammad, Mohammad Alherbawi, Zahangir Alam, Kamaruzaman Sopian, Overview of the production of biodiesel from Waste cooking oil, Renewable and Sustainable Energy Reviews 18 (2013) 184-193. https://doi.org/10.1016/j.rser.2012.10.016

G. Guan, K. Kusakabe, S. Yamasaki, Tri-potassium phosphate as a solid catalyst for biodiesel production from waste cooking oil, Fuel Process. Technol. 90 (2009) 520-524. https://doi.org/10.1016/j.fuproc.2009.01.008

A. Mannu, S. Garroni, J.I. Porras, A. Mele, Available technologies and materials for waste cooking oil recycling, Processes 8 (2020) 366. https://doi.org/10.3390/pr8030366

Yan Wang, Yang Cao, Jin Li, Preparation of biofuels with waste cooking oil by fluid catalytic cracking: The effect of catalyst performance on the products, Renewable Energy, 124 (2018) 34-39. https://doi.org/10.1016/j.renene.2017.08.084

Canakci, M., & Van Gerpen, J., Biodiesel production from oils and fats with high free fatty acids. Transactions of the ASAE, 44 (2001) 1429. https://doi.org/10.13031/2013.7010

A.S. Ramadhas, S. Jayaraj, C. Muraleedharan, Biodiesel production from high FFA rubber seed oil, Fuel 84 (2005) 335-340. https://doi.org/10.1016/j.fuel.2004.09.016

Hong K. D. Nguyen, Ngo T. Dinh, Nga L. T. Nguyen, Don Ta Ngoc, Study on the synthesis and application of mesoporous nanocrystal HZSM-5 for the catalytic cracking of used cooking vegetable oil in Vietnamese restaurants for green diesel. J Porous Mater. 24 (2017) 559–566. https://doi.org/10.1007/s10934-016-0291-z

S.A. Sadeek, E.A. Mohammed, M. Shaban, M.T.H.A. Kana, N.A. Negm, Synthesis, characterization and catalytic performances of activated carbon-doped transition metals during biofuel production from waste cooking oils, Journal of Molecular Liquids, 306 (2020) 112749. https://doi.org/10.1016/j.molliq.2020.112749

T. Hua, L.I. Chunyi, Y. Chaohe, S. Honghong. Alternative processing technology for converting vegetable oils and animal fats to clean fuels and light olefins. Chinese Journal of Chemical Engineering, 16 (2008) 394-400, https://doi.org/10.1016/S1004-9541(08)60095-6

P. Tamunaidu, S. Bhatia, Catalytic cracking of palm oil for the production of biofuels: optimization studies, Bioresour. Technol. 98 (2007) 3593-3601. https://doi.org/10.1016/j.biortech.2006.11.028

Nguyen Le-Phuc, Phuong T. Ngo, Quan L.M. Ha, Tri V. Tran, Thien T. Phan, Loc C. Luu, Long T. Duong, Binh M.Q. Phan, Efficient hydrodeoxygenation of guaiacol and fast-pyrolysis oil from rice straw over PtNiMo/SBA-15 catalyst for co-processing in fluid catalytic cracking process, J. Environ. Chem. Eng. 8 (2019). https://doi.org/10.1016/j.jece.2019.103552

N. Le-Phuc, Y.T.H. Pham, P.N.V. Bui, T.N. Luong, P.N.X. Vo, P.T. Ngo, T.V. Tran, D.A. Nguyen, M. Wenzel, K. Gloe, J.J. Weigand, Towards efficient extraction of La(III) from spent FCC catalysts by alkaline pre-treatment, Miner. Eng. 127 (2018) 1-5. https://doi.org/10.1016/j.mineng.2018.07.020

N. Le-Phuc, Y.T.H. Pham, Ngo, P. T Ngo, et al., Production of high purity rare earth mixture from iron-rich spent fluid catalytic cracking (FCC) catalyst using acid leaching and two-step solvent extraction process, Kor. J. Chem. Eng. 35 (2018) 1195-1202. https://doi.org/10.1007/s11814-018-0022-z

F. Ferella, V. Innocenzi, F. Maggiore, Oil refining spent catalysts: a review of possible recycling technologies, Resour. Conserv. Recycl. 108 (2016) 10-20. https://doi.org/10.1016/j.resconrec.2016.01.010

E. Rautiainen, R. Pimenta, M. Ludvig, C. Pouwels, Deactivation of ZSM-5 additives in laboratory for realistic testing, Catal. Today 140 (2009) 179-186.

https://doi.org/10.1016/j.cattod.2008.10.010

Nguyen Le-Phuc, Tri V. Tran, Thien T. Phan, Phuong T. Ngo, Quan L.M. Ha, Thuy N. Luong, Thinh H. Tran, Tuan T. Phan, High-efficient production of biofuels using spent fluid catalytic cracking (FCC) catalysts and high acid value waste cooking oils, Renewable Energy 168 (2021) 57-63. https://doi.org/10.1016/j.renene.2020.12.050

N. Totani, M. Yawata, T. Mori, E.G. Hammond, Oxygen content and oxidation in frying oil, J. Oleo Sci. 62 (2013) 989-995. https://doi.org/10.5650/jos.62.989

A. Oasmaa, D.C. Elliott, J. Korhonen, Acidity of biomass fast pyrolysis bio-oils, Energy Fuels 24 (2010) 6548-6554. https://doi.org/10.1021/ef100935r

Xu, G. Xiao, Y. Zhou, J. Jiang, Production of biofuels from high-acid-value waste oils, Energy Fuels 25 (2011) 4638-4642. https://doi.org/10.1021/ef2006723

T.H. Nguyen, P.T. Ngo, T.V. Tran, S. Nguyen, D.M. Vu, Q.L.M. Ha, X.T.T. Dao, T.T. Dang, Effect of hydrothermal conditions on the catalytic deactivation of a fluid cracking catalyst, React. Kinet. Mech. Catal. 109 (2013) 563-574. https://doi.org/10.1007/s11144-013-0577-y

J.-S. Chang, et al., Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process, J Taiwan Inst Chem Eng 73 (2017) 1-11. https://doi.org/10.1016/j.jtice.2016.04.014




DOI: https://doi.org/10.51316/jca.2022.012

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA