Synthesis of CuO nanosheets via hydrothermal method

Linh Nguyen Le My, Hieu Bach Thi Kim

Abstract


In this paper, CuO nanosheets were successfully synthesized by a simple hydrothermal method. The synthesized CuO nanosheets were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR), surface area analysis (BET). Several factors influencing the synthesis of material such as concentration of NaOH, hydrothermal temperature and hydrothermal time were studied. Scanning electron microscopy (SEM) investigation reveals that CuO nanosheets have the length of about 500 - 1000 nm. N2 adsorption–desorption isotherm experiment shows that the BET specific surface area of obtained CuO nanosheets is 12.78 m2/g.


Keywords


CuO; nanosheets; hydrothermal method

Full Text:

PDF

References


Qiaobao Z., Kaili Z., Daguo X., Guangcheng Y., Hui H., Fude N., Chenmin L., Shihe Y., Progress in Materials Science (2014), 60, 208–337. https://doi.org/10.1016/j.pmatsci.2013.09.003.

Kim Y-S., Hwang I-S., Kim S-J., Lee C-Y., Lee J-H, Sensors and Actuators B: Chem (2008), 135, 298–303. https://doi.org/10.1016/j.snb.2008.08.026.

Yang C., Su X., Xiao F., Jian J., Wang J., Sensors and Actuators B: Chem (2011), 158, 299 – 303. https://doi.org/10.1016/j.snb.2011.06.024.

Jing L., Jun J., Zhao D., Shao-Zhuan H., Zhi-Yi H., Li W., Chao W., Li-Hua C., Yu L., G. Van T., Bao-Lian S, Journal of Colloid and Interface Science (2012), 384, 1-9. https://10.1016/j.jcis.2012.06.044.

Feng Y., Zheng X., Nano Letters (2010), 10 (11), 4762–4766. https://doi.org/10.1021/nl1034545.

Zhou M., Gao Y., Wang B., Rozynek Z., Fossum J.O., Europeon Journal Inorganic Chemistry (2010), 5, 729–734. https://doi.org/10.1002/ejic.200900683.

Qiu G., Dharmarathna S., Zhang Y., Opembe N., Huang H., Suib S.L, Journal of Physical Chemistry C (2012), 116, 468 – 477. https://doi.org/10.1021/jp209911k.

Neupane M.P., Kim Y.K., Park I.S., Kim K., Lee M.H., Bae T.S., Surface and Interface Analysis (2009), 41, 259 – 263. https://10.1002/sia.3009.

Cao M., Hu C., Wang Y., Guo Y., Guo C., Wang E. Chemical Engineering Journal (2003),5, 1, 1884. https://doi.org/10.1039/B304505F.

Gao X., Bao J., Pan G., Zhu H., Huang P., Wu F, et al, Journal Physical Chemistry B (2004), 108, 5547–5551. https://doi.org/10.1021/jp037075k.

Jingang Z., Renming L., Zengghe H. (2015), Superlattices and Microstructures (2015), 81, 243 – 247. https://doi.org/10.1016/j.spmi.2015.01.017.

Behrouz S., Ebrahim A.G., Yashar A.K., Ali K., Advanced Powder Technology (2014), 25, 1043–1052. https://10.1016/j.apt.2014.02.005.

Cudennec Y., Lecerf A, Solid State Sci (2003); 5, 1471–1474. https://10.1016/J.SOLIDSTATESCIENCES.2003.09.009

Shrestha K.M., Sorensen C.M., Klabunde K.J., Journal Physical Chemistry C (2010), 114, 14368 – 14376. https://doi.org/10.1021/jp103761h.




DOI: https://doi.org/10.51316/jca.2022.011

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA