Study the structure, stability and CO2 adsorption of the ScVB5 cluster

Thao Nguyen Minh, Thanh Bui Tho

Abstract


A combination of genetic algorithm and density functional theory (GA-DFT) was used to calculate the minimum structures of ScVB5 clusters. The thirteen isomers of ScVB5 cluster were investigated at the level of PBE/def2-TZVPP, TPSSh/def2-TZVPP, and TPSSh/def2-QZVP levels. The relative energies, the structural geometry, ionization energy, affinity energy of neutral isomers were reported. The ScVB5 cluster can be formed by adding atom into smaller clusters. The proposed structure of ScVB5 cluster for CO2 treatment is a pentagonal bipyramid in the Cs symmetry with vanadium atom at one of the vertices and scandium atom in the base of bipyramid. The favor position for adsorp CO2 by the ScVB5 cluster were at around of Sc and V atoms. The dual transition metal-doped boron clusters can interact with CO2 molecules stronger than pure boron clusters. 


Keywords


CO2 adsorption; density functional theory; genetic algorithm; ScVB5 cluster

Full Text:

PDF

References


H. Lei, Z. Hou, J. Xie, Fuel 164 (2016) 191. https://doi.org/10.1016/j.fuel.2015.09.082

Y. Yang, H. Gao, J. Feng, S. Zeng, L. Liu, L. Liu, B. Ren, T. Li, S. Zhang, X. Zhang, ChemSusChem 13 (2020) 4900. https://doi.org/10.1002/cssc.202001194

H.T. Pham, M.P. Pham-Ho, M.T. Nguyen, Chemical Physics Letters 728 (2019) 186. https://doi.org/10.1016/j.cplett.2019.04.087

H. Jiang, L. Ma, Q. Yang, Z. Tang, X. Song, H. Zeng, C. Zhi, Solid State Commun. 294 (2019) 1. https://doi.org/10.1016/j.ssc.2019.02.010

H. Bai, M. Ma, J. Zuo, Q.F. Zhang, B. Bai, H. Cao, W. Huang, Phys Chem Chem Phys 21 (2019) 15541. https://doi.org/10.1039/c9cp02380a

W. Wang, X. Zhang, P. Li, Q. Sun, Z. Li, C. Ren, C. Guo, J. Phys. Chem. A 119 (2015) 796. https://doi.org/10.1021/jp511669w

S.S. Ray, S.R. Sahoo, S. Sahu, Int. J. Hydrog. Energy 44 (2019) 6019. https://doi.org/10.1016/j.ijhydene.2018.12.109

T. Jian, W.-L. Li, I.A. Popov, G.V. Lopez, X. Chen, A.I. Boldyrev, J. Li, L.-S. Wang, J. Chem. Phys. 144 (2016) 154310. https://doi.org/10.1063/1.4946796

F. Cui-Ju, M.I. Bin-Zhou, J. Magn. Magn. Mater. 405 (2016) 117. https://doi.org/10.1016/j.jmmm.2015.12.060

I.A. Popov, T. Jian, G.V. Lopez, A.I. Boldyrev, L.-S. Wang, Nat. Commun. 6 (2015) 8654. https://doi.org/10.1038/ncomms9654

J. Jia, X. Li, Y. Li, L. Ma, H.-S. Wu, Comput. Theor. Chem. 1027 (2014) 128. https://doi.org/10.1016/j.comptc.2013.11.008

J. Jia, L. Ma, J.-F. Wang, H.-S. Wu, J. Mol. Model. 19 (2013) 3255. https://doi.org/10.1007/s00894-013-1860-6

G.-x. Ge, Q. Jing, H.-b. Cao, H.-x. Yan, J. Cluster Sci. 23 (2012) 189. https://doi.org/10.1007/s10876-011-0419-x

D. Tzeli, A. Mavridis, J. Chem. Phys. 128 (2008) 034309. https://doi.org/10.1063/1.2821104

X. Liu, G.-f. Zhao, L.-j. Guo, Q. Jing, Y.-h. Luo, Phys. Rev. A 75 (2007) 063201. https://doi.org/10.1103/PhysRevA.75.063201

H. Tan Pham, M.T. Nguyen, J. Phys. Chem. A 123 (2019) 8170. https://doi.org/10.1021/acs.jpca.9b04078

Q. Zhang, H. Qu, M. Chen, M. Zhou, J. Phys. Chem. A 120 (2016) 425. https://doi.org/10.1021/acs.jpca.5b11809

Y. Minenkov, E. Chermak, L. Cavallo, J. Chem. Theory. Comput. 11 (2015) 4664. https://doi.org/10.1021/acs.jctc.5b00584

C. Riplinger, F. Neese, J. Chem. Phys. 138 (2013) 034106. https://doi.org/10.1063/1.4773581

Y. Guo, C. Riplinger, D.G. Liakos, U. Becker, M. Saitow, F. Neese, J. Chem. Phys. 152 (2020) 024116. https://doi.org/10.1063/1.5127550

P. Jennings, R. Johnston, Comput. Theor. Chem. 1021 (2013) 91. https://doi.org/10.1016/j.comptc.2013.06.033

H.A. Hussein, R.L. Johnston, Frontiers of Nanoscience, Elsevier, 2019, p. 145.

S. Xue, H. Tang, J. Zhou, J. Asian Archit. Build. Eng. 8 (2018) 517. https://doi.org/10.3130/jaabe.8.517

P. Mitikiri, G. Jana, S. Sural, P.K. Chattaraj, Int. J. Quantum Chem. 118 (2018) e25672. https://doi.org/10.1002/qua.25672

A.R. Oganov, C.W. Glass, J. Chem. Phys. 124 (2006) 244704. https://doi.org/10.1063/1.2210932

A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu, Comput. Phys. Commun. 184 (2013) 1172. https://doi.org/10.1016/j.cpc.2012.12.009

A.R. Oganov, A.O. Lyakhov, M. Valle, Acc. Chem. Res. 44 (2011) 227. https://doi.org/10.1021/ar1001318

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Condens. Matter Phys. 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865

K.P. Jensen, Inorganic Chemistry 47 (2008) 10357. https://doi.org/10.1021/ic800841t

F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297. https://doi.org/10.1039/B508541A

F. Neese, WIREs Comput. Mol. Sci. 8 (2017). https://doi.org/10.1002/wcms.1327

C. Herzbong, Molecular spectra and molecular structure II. Infrared and roman spectra of poly atomic molecules, 1951, p. 288.

T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580. https://doi.org/10.1002/Jcc.22885




DOI: https://doi.org/10.51316/jca.2022.008

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA