Effect of monovalent ion electrolyte on energy storage mechanism of nanocomposites TiO2@CNTs

Nguyen Huynh Le Thanh, Trang Le Nguyen Thao, Quynh Nguyen Thi Nhu, Trang Nguyen Thi Thu, Hai Le Viet, Hoang Nguyen Thai, Nam Pham Thi, Lam Tran Dai, Lu Le Trong

Abstract


Electrolyte plays the vital role of carrying ions in the operation of chemical power sources. In this work, the lithium, sodium and posstasium-based aqueous electrolytes were performed in the supercapacitor using nano TiO2 electrode. The anataste phase TiO2 was prepared via sol-gel route, which were charaterized by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Thermogravimetric analysis (TGA), and Raman. The electrochemical behaviors were conducted by cyclic voltammetry and charge-discharge cycling test. Electrochemical results showed TiO2@CNTs exhibited the pseudocapacitor behavior through the quasi-rectangle voltammetry, the maximum capacity achived using Li2SO4 1M is 245 F/g and Na2SO4 1M is 168 F/g at scan rate of 5 mV/s.

Keywords


Electrolyte; capacitance; TiO2; supercapacitor

Full Text:

PDF

References


D. J. Ahirrao, H. M. Wilson, N. Jha, Appl. Surf. .Sci. 491 (2019) 765-778. https://doi.org/10.1016/j.apsusc.2019.05.076

J. Sudarto, A. Subagio, P. Priyono, P. Pardoyo, R. Yudianti, ,S. Subhan, Makara J. Sci. 21(2) (2017) 53–58.

https://doi.org/10.7454/mss.v21i2.4230

F. Naeem, S. Naeem, Y. Zhao, Di. Wang, J. Zhang, Y. Mei, G. Huang, Nanoscale Res. Lett. 14 (2019) 92. https://doi.org/10.1186/s11671-019-2912-3

P. Simon, Y. Gogotsi, Nat. Mater. 2008 7(11) 845–854. https://doi.org/10.1038/nmat2297

B. E. Conway, Electrochem Supercapacitors (1999). https://doi.org/10.1007/978-1-4757-3058-6_2

A. Burke, J. Power Sources 91(1) (2000) 37–50. https://doi.org/10.1016/S0378-7753(00)00485-7

V. H. Pham, T. D. Nguyen-Phan, X. Tong, B. Rajagopalan, J. S. Chung, J. H. Dickerson, Carbon N. Y. 126 (2018) 135–144. https://doi.org/10.1016/j.carbon.2017.10.026

S. Yang, Y. Li, J. Sun, B. Cao, J. Power Sources 431 (January) (2019) 220–225. https://doi.org/10.1016/j.jpowsour.2019.05.016

L. Xia, L. Yu, D. Hu, G. Z. Chen, Mater. Chem. Front. 1(4) (2017) 584–618. https://doi.org/10.1039/C6QM00169F

G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41(2) (2012) 797–828.

https://doi.org/10.1039/c1cs15060j

A. Cartón, F. Sobrón, S. Bolado, J. I. Gerbolés, J. Chem. Eng. Data 40(4) (1995) 987–991. https://doi.org/10.1021/JE00020A057

I. M. Abdulagatov, N. D. Azizov, Int. J. Thermophys., 26(3) (2005) 593–635. https://doi.org/10.1007/s10765-005-5567-5

I. M. Abdulagatov, A. Zeinalova, N. D. Azizov, Fluid Phase Equilib. 227(1) (2005) 57–70. https://doi.org/10.1016/j.fluid.2004.10.028

M. M. Vadiyar, S. C. Bhise, S. K. Patil, S. S. Kolekar, J. Y. Chang, A. V. Ghule, ChemistrySelect 1(5) (2016) 959–966.

https://doi.org/10.1002/slct.201600151

D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellisb, D. Kovacheva, J. Power Sources 165(2) (2007) 491–499. https://doi.org/10.1016/j.jpowsour.2006.10.025

R. M. Silva, A. C. Bastos, F. J. Oliveira, D. E. Conte, Y. Fan, N. Pinna, R. F. Silva, J. Mater. Chem. A 3(34) (2015) 17804–17810. https://doi.org/10.1039/C5TA03734D




DOI: https://doi.org/10.51316/jca.2021.136

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA