Sn doped Hematite Nanorods for High-Performance Photoelectrochemical Water Splitting

Hien Truong Thi, Bich Vu Thi, Binh Phan Thi, Thuy Mai Thi Thanh, Tan Man Minh, Dai Nguyen Tien, Trang Tran Thi, Hien Chu Thi Thu, Tuan Chu Van, Nguyet Nguyen Thi

Abstract


Photoelectrochemical water splitting is of great attention due to its environmentally friendly generation of clean fuels. Hematite (α-Fe2O3) is considered a promising candidate due to its intrinsic properties for the high-performance photoelectrochemical electrode, such as favorable bandgap (2.0–2.2 eV), a suitable energy band position non-toxicity, low cost, and excellent chemical stability. Herein, we report about Sn-doped hematite nanorods and their implementation as photoanodes for photoelectrochemical water splitting. We provide the simple but efficient route to incorporate the Sn into the hematite without structural damage in the nanostructure and scrutinize the effect of Sn dopant on the photoelectrochemical activity of the hematite. Sn can be successfully incorporated into the hematite by the two-step heat treatment process, which reveals the enhanced photoelectrochemical responses compared with undoped hematite.  We elaborate on the effect of Sn dopant in the hematite on the photoelectrochemical activities, thereby suggesting the optimum concentration of Sn dopant.

Keywords


Photoelectrochemical Cell; Water Splitting; Hematite; Sn doping; Photoanode

Full Text:

PDF

References


M. Grätzel, Nature., 414 (2001) 338. https://doi.org/10.1038/35104607

J. Gan, X. Lu, Y. Tong, Nanoscale., 6 (2014) 7142-7164. https://doi.org/10.1039/c4nr01181c

M. Mishra, D.-M. Chun, Appl. Catal. A Gen., 498 (2015) 126-141. https://doi.org/10.1016/j.apcata.2015.03.023

J. Brillet, M. Gratzel, K. Sivula, Nano lett., 10 (2010) 4155-4160. https://doi.org/10.1021/nl102708c

M. Gaudon, N. Pailhé, J. Majimel, A. Wattiaux, J. Abel, A. Demourgues, J. Solid State Chem., 183 (2010) 2101-2109. https://doi.org/10.1016/j.jssc.2010.04.043

Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, Nano Lett. 11 (2011) 2119-2125. https://doi.org/10.1021/nl200708y

Y. Ling, Y. Li, Part. Part. Syst. Char., 31 (2014) 1113-1121. https://doi.org/10.1002/ppsc.201400051

R.M. Guanjie Ai, H. Li, J. Zhong, Nanoscale. 7 (2015) 6722-6728. https://doi.org/10.1039/C5NR00863H

M. Li, Y. Yang, Y. Ling, W. Qiu, F. Wang, T. Liu, Y. Song, X. Liu, P. Fang, Y. Tong, Y. Li, Nano Lett. 17 (2017) 2490-2495. https://doi.org/10.1021/acs.nanolett.7b00184

H. Naono, K. Nakai, T. Sueyoshi, H. Yagi, J. Colloid Interface Sci. 120 (1987) 439-450. https://doi.org/10.1016/0021-9797(87)90370-5

N. D. Quang, T.T. Hien, N.D. Chinh, D. Kim, C. Kim, D. Kim, Electrochim. Acta. 295 (2019) 710-718. https://doi.org/10.1016/j.electacta.2018.11.008

L. Mei, L. Liao, Z. Wang, C. Xu, Adv. Mate. Sci. Eng., (2015) 1-10. https://doi.org/10.1155/2015/250836

H. Song, L. Zhang, C. He, Y. Qu, Y. Tian, Y. Lv, J. Mater. Chem. 21 (2011) 5972. https://doi.org/10.1039/C0JM04331A

N.T. Hahn, C.B. Mullins, Chem. Mater. 22 (2010) 6474-6482. https://doi.org/10.1021/cm1026078




DOI: https://doi.org/10.51316/jca.2021.129

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA