Development of new metal-thiosemicarbazone complexes using visual screening methods and in silico models

Quang Nguyen Minh, An Tran Nguyen Minh, Tat Pham Van

Abstract


The stability constants (logβ11) of forty-two new metal-thiosemicarbazone complexes were predicted based on the results of the quantitative structure-property relationship (QSPR). The QSPR models were developed from 88 logb11 values of experimental complexes by using the multivariate linear regression (QSPRMLR) and artificial neural network (QSPRANN). Four descriptors such as xch9, xv0, core-core repulsion and cosmo area were found out in the best of the linear model QSPRMLR which was harshly evaluated by the statistical values: R2train = 0.864, Q2LOO = 0.840, SE = 0.711, Fstat = 131,355 and PRESS = 49.31. Furthermore, the artificial neural network model QSPRANN with architecture I(4)-HL(5)-O(1) was discovered with the same variables of the QSPRMLR model that the statistical results were extremely impressive as R2train = 0.970, Q2CV = 0.984 and Q2test = 0.974. Also, both of the QSPR models were externally validated on the data set of 18 logb11 values of independently experimental complexes. As a consequence, the results from the QSPR models could be used to calculate the stability constants of other new metal-thiosemicarbazones.


Keywords


ANN; MLR; QSPR; stability constants logb11; metal-thiosemicarbazone complex

Full Text:

PDF

References


R. Kunal, K. Supratik, N. D. Rudra. A Primer on QSAR/QSPR Modeling, Fundamental Concepts. New York: Springer (2015).

https://doi.org/ 10.1007/978-3-319-17281-1

OECD, France: Organisation for Economic Co‐operation and Development (2007). https://doi.org/10.1787/9789264085442-en

J. S. Casas, M. S. Garcı́a-Tasende, J. Sordo., Coordination Chemistry Reviews 209(1) (2000) 197-261.

https://doi.org/10.1016/S0010-8545(00)00363-5

M. Hymavathi, C. Viswanatha, N. Devanna. Int. J. Math and Phys. Sci. Res. 2(1) (2014) 43-48.

M. Hymavathi, C. Viswanatha, N. Devanna. W. J. Pharm. Phar. Sci. 3(8) (2014) 1688-1695.

E. A. Gomaa, K. M. Ibrahim, N. M. Hassan., Int J. Eng. Sci. 3(1) (2014) 44-51.

M. Aljahdali, A. A. EL-Sherif., Chimica Acta. 407 (2014) 58-68. https://doi.org/10.1016/j.ica.2013.06.040

A. T. A. El-Karim, A. A. El-Sherif., J. Mol. Liq. 219 (2016) 914-922. https://doi.org/10.1016/j.molliq.2016.04.005

Sahadev, R. K. Sharma, S. K. Sindhwani., Thermochimica Acta 202 (1992) 291-299. https://doi.org/10.1016/0040-6031(92)85173-S

K. Sarkar, B. S. Garg. Thermochimica Acta 113 (1987) 7-14.

https://doi.org/10.1016/0040-6031(87)88301-6

QSARIS 1.1, USA: Statistical Solutions Ltd, 2001.

J. J. P. Stewart. MOPAC2016, Version: 17.240W, Stewart Computational Chemistry, USA, 2016.

D. D. Steppan, J. Werner, P. R. Yeater. Essential Regression and Experimental Design for Chemists and Engineers, Free Software Package. http://home.t-online.de/home/jowerner98/indexeng.html, 1998.

E. J. Billo.USA: John Wiley and Sons, Inc, 2007. https://doi.org/ 10.1002/9780470126714

J. Gasteiger, J. Zupan. Chiw. Inr. Ed. EngI. 32 (1993) 503-521.

https://doi.org/10.1002/anie.199305031

Artelnics. Neural Designer software, USA: Artificial Intelligence Techniques Ltd., 2020.

Matlab R2016a 9.0.0.341360, USA: MathWorks, 2016.

V. T. Pham. Development of QSAR and QSPR. Ha Noi: Publisher of Natural sciences and Technique, 2009.

M. N. M. Milunovic, E. A. Enyedy, N. V. Nagy, T. Kiss, R. Trondl, M. A. Jakupec, B. K. Keppler, R. Krachler, G. Novitchi, V. B. Arion. L- And D Proline, Inorg. Chem. 51 (2012) 9309-9321. https://doi.org/10.1021/ic300967j

B. S. Garg, V. K. Jain., Thermochimica Acta. 146 (1989) 375-379.

https://doi.org/10.1016/0040-6031(89)87108-4

S. S. Sawhney, S. K. Chandel, Thermochimica Acta 71 (1983) 209-214. https://doi.org/10.1016/0040-6031(83)80369-4

S. S. Sawhney, R. M. Sati., Thermochimica Acta 66 (1983) 351-355.

https://doi.org/10.1016/0040-6031(93)85047-D

I. J. Al-Busaidi, A. Haque, N. K. Al Rasbi, M. S. Khan. Synthetic Metals 257 (2019) 116-189. https://doi.org/10.1016/j.synthmet.2019.116189

G. Sudeshna, K. Parimal., Journal of Pharmacology 648(1-3) (2010) 6-14. https://doi.org/10.1016/j.ejphar.2010.08.045

L. Huang, Z. L. Feng, Y. T. Wang, L. G. Lin. Chinese Journal of Natural Medicines 15(12) (2017) 881-888.

https://doi.org/10.1016/S1875-5364(18)30003-7

G. Krucaite, S. Grigalevicius. Synthetic Metals 247 (2019) 90-108. https://doi.org/10.1016/j.synthmet.2018.11.017




DOI: https://doi.org/10.51316/jca.2021.096

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA