Synthesis of Mo-Modified TiO2 Material with Enhanced Photocatalytic activity

Ha Tran Huu, Ngoc Ngo Van, Vien Vo, Lan Nguyen Thi

Abstract


The Mo-modified TiO2 was synthesized via facile impregnation combined with pyrolysis of mixtures in several different initial mass ratios of precursors as mTi(OH)4/m(NH4)6Mo7O24.4H2O equaling 5, 10 and 15 in 500 oC for an hour. The as-prepared samples, denoted as n-MT-500 within n for the initial mass ratio of precursors, were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, Raman spectroscopy, as well as X-ray photoelectron spectroscopy, which all not only illustrate the presence of TiO2 and MoO3 components in the composites but also demonstrate the introduction of Mo hetero-atom into anatase lattice. All of the obtained samples performed higher photocatalytic activity under visible light than TiO2 via the photodecomposition of RhB in aqueous solution, in which 10-MT-500 exhibits the highest degradation efficiency up to 87% after 5-hour illumination.


Keywords


TiO2; MoO3; photocatalyst; Ilmenite; modified-TiO2

Full Text:

PDF

References


M. Adachi, Y. Murata, M. Harada, Chem. Lett. 8 (2000) 942–943.

https://doi.org/10.1246/cl.2000.942

T. Ali, P. Tripathi, Ameer Azam, Waseem Raza, Arham S. Ahmed, Ateeq Ahmed and M. Muneer, Materials Research Express 4(1) (2017) 015022. http://iopscience.iop.org/2053-1591/4/1/015022

O. Teruhisa, M. Takahiro, M. Michio, Chemistry Letters 32(4) (2003) 364-365. https://doi.org/10.1246/cl.2003.364

J. Wang, D. N. Tafen, J. P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li and N. Wu, J. Am. Chem. Soc. 131 (34) (2009) 12290–12297.

https://doi.org/10.1021/ja903781h

K.Vinodgopal, I. Bedja, and P. V. Kamat, Chem. Mater. 8 (8) (1996) 2180–2187. https://doi.org/10.1021/cm950425y

K. Woan, G. Pyrgiotakis, W. Sigmund, Advanced Materials 21(21) (2009) 2233-2239. https://doi.org/10.1002/adma.200802738

J. SukJang, H. Kim, P. H. Borse, J. SungLee, International Journal of Hydrogen Energy 32(18) (2007) 4786-4791. https://doi.org/10.1016/j.ijhydene.2007.06.026

Q. Xiang, J. Yu and M. Jaroniec, J. Am. Chem. Soc. 134(15) (2012) 6575–6578. https://doi.org/10.1021/ja302846n

Q. Liu, J. Hu, Y. Liang, Z. C. Guan, H. Zhang, H. P. Wang, and R. G. Du, Journal of The Electrochemical Society 163(9) (2016) C539-C544. https://10.1149/2.0481609jes

A. Chithambararaj, N. S. Sanjini, S. Velmathi and A. C. Bose, Phys. Chem. Chem. Phys. 15 (2013) 14761-14769. https://doi.org/10.1039/C3CP51796A

Z. Li, Z. Wang, G. Li, Powder Technology, 287 (2016) 256–263. https://doi.org/10.1016/j.powtec.2015.09.008

N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, Jun Chen, Burapat Inceesungvorn, J. Colloid Interface Sci. 417 (2014) 402-409. https://doi.org/10.1016/j.jcis.2013.11.072

R.A. Senthil, J. Theerthagiri, A. Selvi, J. Madhavan, Optical Materials 64 (2017) 533-539. https://doi.org/10.1016/j.optmat.2017.01.025

I. Shakir, J. H. Choi, M. Shahid, Z. Ali and D. J. Kang, J. Mater. Chem. 22 (2012) 20549. https://doi.org/10.1039/C2JM33458E

J. Huang et. al., Hindawi Publishing Corporation Journal of Spectroscopy, ID 681850 (2015) 8 pages. https://doi.org/10.1155/2015/681850

S. Wang, L.N. Bai, H.M. Sun, Q. Jiang, J.S. Lian, Powder Technology 244 (2013) 9–15. https://doi.org/10.1016/j.powtec.2013.03.054

Osmín Avilés-García, Jaime Espino-Valencia, Rubí Romero, José Luis Rico-Cerda, Manuel Arroyo-Albiter, Reyna Natividad, Fuel 198 (2017) 31-41. https://doi.org/10.1016/j.fuel.2016.10.005

V.D. Mote et. al., Journal of Theoretical and Applied Physics (2012) 6(6). https://www.jtaphys.com/content/2251-7235/6/1/6

L. Gomathi Devi, B. Narasimha Murthy, S. Girish Kumar, Journal of Molecular Catalysis A: Chemical 308 (2009) 174–181. https://doi.org/10.1016/j.molcata.2009.04.007

Fei Kong, Li Huang, Leilei Luo, Sheng Chu, Ying Wang and Zhigang Zou, Journal of Nanoscience and Nanotechnology 12 (2012) 1931–1937. https://doi.org/10.1166/jnn.2012.5163

Fattima Al-Zahra, G. Gassim, Ahmed N. Alkhateeb, Desalination 209 (2007) 342–349. https://doi.org/10.1016/j.desal.2007.04.049

Matiullah Khan, Junna Xu, Wenbin Cao and Zi-Kui Liu, Journal of Nanoscience and Nanotechnology 14 (2014) 6865-6871. https://doi.org/10.1166/jnn.2014.8985

W. K. Jo, T. Adinaveen, J. J. Vijaya and N. C. S. Selvam, RSC Adv., 6 (2016) 10487-10497. https://doi.org/10.1039/C5RA24676H

L.E. Firment, A. Faretti, Surface Science 129 (1983) 155-176. https://doi.org/10.1016/0039-6028(83)90100-0

T. H. Fleisch, G. J. Mains, Journal of Chemical Physics, 76, 1982, 780-788. https://doi.org/10.1063/1.443047

V. Štengl and S. Bakardjieva, J. Phys. Chem. C 114(45) (2010) 19308–19317. https://doi.org/10.1021/jp104271q

Batzill M, Morales EH, Diebold U, Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase, Phys. Rev. Lett. 96 (2006) 026103. https://doi.org/10.1103/PhysRevLett.96.026103

H. E. Cheng, Y. R. Chen, W. T. Wu, and C. M. Hsu, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis, Mater. Sci. Eng. B , (2011) 576-596. https://doi.org/10.1016/j.mseb.2011.02.001

Yanqin Gai, Jingbo Li, Shu-Shen Li, Jian-Bai Xia, and Su-Huai Wei, Phys. Rev. Lett. 102 (2009) 036402. https://doi.org/10.1103/PhysRevLett.102.036402

H. Mahmood, A. Habib, M. Mujahid, M. Tanveer, S. Javed, A. Jamil, Mater. Sci. Semicond. Process., 24 (2014) 193–199. https://doi.org/10.1016/j.mssp.2014.03.038

S. H. Elder et. al., J. Am. Chem. Soc. 122 (2000) 5138-5146. https://doi.org/10.1021/ja992768t

A. Q. Khan, S. Yuan, S. Niu, L. Zheng, W. Li and H. Zeng, Optics Express 25(12) (2017) A539-A546. https://doi.org/10.1364/OE.25.00A539

H. Liu, T. Lu, C. Zhu, Z. Zhu, Solar Energy Materials & Solar Cells 153 (2016) 1–8. https://doi.org/10.1016/j.solmat.2016.04.013

Shelly Burnside, Jacques-E. Moser, Keith Brooks, and Michael Grätzel, J. Phys. Chem. B 103 (43) (1999) 9328–9332. https://doi.org/10.1021/jp9913867

Wen Li, Jinfen Chen, Rongting Guo, Jiaming Wu,

Xiaosong Zhou and Jin Luo, Journal of Materials Science: Materials in Electronics 28(21) (2017) 15967–15979. https://10.1007/s10854-017-7495-0

Batzill M, Morales EH, Diebold U, Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase, Phys. Rev. Lett. 96 (2006) 026103. https://doi.org/10.1103/PhysRevLett.96.026103

H. E. Cheng, Y. R. Chen, W. T. Wu, and C. M. Hsu, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis, Mater. Sci. Eng. B , (2011) 576-596. https://doi.org/10.1016/j.mseb.2011.02.001

Yanqin Gai, Jingbo Li, Shu-Shen Li, Jian-Bai Xia, and Su-Huai Wei, Phys. Rev. Lett. 102 (2009) 036402. https://doi.org/10.1103/PhysRevLett.102.036402

H. Mahmood, A. Habib, M. Mujahid, M. Tanveer, S. Javed, A. Jamil, Mater. Sci. Semicond. Process., 24 (2014) 193–199. https://doi.org/10.1016/j.mssp.2014.03.038

S. H. Elder et. al., J. Am. Chem. Soc. 122 (2000) 5138-5146. https://doi.org/10.1021/ja992768t

A. Q. Khan, S. Yuan, S. Niu, L. Zheng, W. Li and H. Zeng, Optics Express 25(12) (2017) A539-A546. https://doi.org/10.1364/OE.25.00A539

H. Liu, T. Lu, C. Zhu, Z. Zhu, Solar Energy Materials & Solar Cells 153 (2016) 1–8. https://doi.org/10.1016/j.solmat.2016.04.013

Shelly Burnside, Jacques-E. Moser, Keith Brooks, and Michael Grätzel, J. Phys. Chem. B 103 (43) (1999) 9328–9332. https://doi.org/10.1021/jp9913867

Wen Li, Jinfen Chen, Rongting Guo, Jiaming Wu, Xiaosong Zhou and Jin Luo, Journal of Materials Science: Materials in Electronics 28(21) (2017) 15967–15979. https://10.1007/s10854-017-7495-0




DOI: https://doi.org/10.51316/jca.2021.090

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA