Nickel nanoparticles supported on titanium oxides nanotubes as an efficient catalyst for hydrodechlorination of 3-chlorophenol

Thanh Thien Co, Thanh Hai Do, Thanh My Nguyen, Dinh Tuan Anh Lu, Thi Duyen Diep, Duong Viet Tan Vo, Thi Yen Nhi Nguyen, Thuan Khiet Trinh Nguyen, Ngoc Thao Nguyen Du, Thien An Nguyen, Pham Anh Vu Ho, Thi Diem Huong Nguyen, Hue Ngan Dai, Tan Phat Vu

Abstract


Titanium oxides nanotubes (TNTs) were prepared by hydrothermal method and used as nano-support for nickel nanoparticles. Indeed, nickel nanoparticles supported TNTs (Ni-TNTs) were in situ synthesized from nickel salt and TNTs by chemical reduction method using sodium borohydride (NaBH4) as reducing agent. The physio-chemical properties of Ni-TNTs nano-catalysts were fully characterized such as Transmission Electron Microscopy (TEM), Scanning Electron Microscope (SEM), and X-ray diffraction (XRD). The results showed that nickel salt was completely reduced to Ni0 metal with an average particle size of 12 nm. On the other hand, the catalytic activity is tested by the hydrodechlorination of chlorinated organic compounds. The hydrode-chlorinated conversion of 3-chlorophenol was obtained over 97%.


Keywords


Hydrodechlorination; nanocatalyst; nickel nanoparticles; titanium oxides nanotubes

Full Text:

PDF

References


L. Gui, R. W. Gillham. ACS Div. Environ. Chem. Prepr. 41 (1), (2001) 1132–1137. http://doi.org/10.1021/bk-2002-0837.ch014

G. Chehade, N. Alrawahi, B. Yuzer, I. Dincer. Sci. Total Environ. 712 (2020) 136358. https://doi.org/10.1016/ j.scitotenv.2019.136358

T. Doan, A. Dang, D. Nguyen, T. H. Vuong, M. T. Le, H. P. Thanh. J. Chem. 5552187 (2021) 1-15. https://doi.org /10.1155/2021/5552187

R. A. Khaydarov, R. R. Khaydarov, O. Gapurova. J. Colloid Interface Sci. 406 (2013) 105–110. http://dx.doi. org/10.1016/j.jcis.2013.05.067

X. Ma, Y. Liu, X. Li, J. Xu, G. Gu, C. Xia. Appl. Catal. B Environ. 165 (2015) 351–359. http://dx.doi.org/10.1016/ j.apcatb.2014.10.035

S. Du, X. Wang, J. Shao, H. Yang, G. Xu, H. Chen. Energy 74 (C), (2014) 295–300. http://dx.doi.org/10.1016/ j.energy.2014.01.012

T. T. Co, D. K. Le, V. D. Le, T. N. T. Doan. Sci. Technol Dev. J. 23 (4), (2020) 764–770. http://doi.org/10.32508/ stdj.v23i4.2451

K. Wiltschka, L. Neumann, M. Werheid, M. Bunge, R. A. Düring, K. Mackenzie, et al. Appl. Catal. B Environ. 275 (2020) 19100–19109. https://doi.org/10.1016/j.apcatb. 2020.119100

L. Xu, E. E. Stangland, A. L. Dumesic, M. Mavrikakis. ACS Catal. 11 (13), (2021) 7890–7895. http://doi.org/10.1021/ acscatal.1c00940

Y. Xu, J. Ma, Y. Xu, H. Li, P. Li, et al. Appl. Cata.l A Gen 413-414 (2012) 350–357. http://doi.org/10.1016/j.apcata. 2011.11.026

M. Balda, F. D. Kopinke. Chem. Eng. J. 338 (2020) 124185.

https://doi.org/10.1016/j.cej.2020.124185

K. Nakajima, K. Nansai, K. Matsubae, M. Tomita, W. Takayanagi, T. Nagasaka. Sci. Total Environ. 586 (2017) 730–737. http://dx.doi.org/10.1016/j.scitotenv.2017.02. 049

T. T. Co, N. M. Nguyen, L. D. K. Vo. Vietnam J. Chem. 59 (2), (2021) 192–197. http://doi.org/10.1002/vjch.202000 142

I. Khan, K. Saeed, I. Khan. Arabian Journal of Chemistry. 12 (2019) 908–931. http://doi.org/10.1016/j.arabjc. 2017.05.011

N. Neelakandeswari, G. Sangami, P. Emayavaramban, S. B. Ganesh, R. Karvembu, N. Dharmaraj. J. Mol. Catal. A Chem. 356 (2012) 90–99.

http://doi.org/10.1016/ j.molcata.2011.12.029

M. Dusselier, M. E. Davis. Chem. Rev. 118 (11), (2018) 5265–5329.

https://doi.org/10.1021/acs.chemrev. 7b00738

H. Liang, Z. Wang, L. Liao, L. Chen, Z. Li, J. Feng. Optik. 136 (2017) 44–51. http://dx.doi.org/10.1016/j.ijleo.2017. 02.018

C. Wang, Z. H. Shi, L. Peng, W. M. He, L. B. Liang, K. Z. Li.. Surfaces and Interfaces. 7 (2017) 116–124. http://doi.org/10.1016/j.surfin.2017.03.007

T. N. T. Le, B. T. Tran, T. H. T. Vu. Tạp chí khoa học ĐHSP Thành phố Hồ Chí Minh. 2 (67), (2015) 1–2. http://journal.hcmue.edu.vn/index.php/hcmuejos/article/download/451/443

V. S. Nguyen, T. D. T. Duong, T. P. Nguyen, T. S.N. Le. Sci. Tech. Dev. J. 18 (2015) 228–236. http://stdj.scienceandtechnology.com.vn/index.php/stdj/article/download/1188/1556/

T. T. Co, T. K. A. Tran, T. H. L. Doan, T. D. Diep. J. Chem. 8580754 (2021) 1–9. http://doi.org/10.1155/2021/8580754

L. G. Vernasqui, A. F. Sardinha, S. S. Oishi, N. G. Ferreira. J. Mater. Res. Technol. 12 (2021) 597–612. https://doi.org/10.1016/j.jmrt.2021.02.099

M. Tak, H. Tomar, R. G. Mote. Procedia CIRP. 95 (2020) 803–8.

https://doi.org/10.1016/j.procir.2020.01.140

D. Li, S. Komarneni. J. Am. Ceram. Soc. 89 (5), (2006) 1510–1517. http://doi.org/10.1111/j.1551-2916.2006.00925.x




DOI: https://doi.org/10.51316/jca.2021.078

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA