Investigation of CuMnOx spinel catalyst for toluene oxidation
Abstract
CuMnOx spinel catalyst, prepared by the sol-gel method, and characterized by modern techniques such as XRD, BET, H2-TPR, EPR, were used to oxide toluene in the temperature range from 150oC to 400oC . Among, the investigated catalysts as MnO2, CuO, and CuMnOx, the CuMnOx showed the highest catalytic activity. It converted 100% toluene to CO2 at 250oC in excessed oxygen conditions. The higher catalytic performance of CuMnOx than MnO2, CuO because of its higher specific surface area and its lower reduction temperature. The results also implied that the interaction between Cu and Mn could improve the reduction capacity of CuMnOx catalyst. In summary, the CuMnOx catalyst is a promising catalyst for toluene treatment.
Keywords
Full Text:
PDFReferences
C. H. Wang, Chemosphere 55 (2004) 11-17. https://doi.org/10.1016/j.chemosphere.2003.10.036.
M. Alifanti, M. Florea, V. I. Pârvulescu, Applied Catalysis B: Environmental 70 (2007) 400-405. https://doi.org/10.1016/J.APCATB.2005.10.037
S. Dey, N.S. Mehta, Resources, Environment and Sustainability 4 (2021). https://doi.org/10.1016/j.resenv.2021.100025
M. R. Morales, B. P. Barbero, Appl. Catal. B: Environmental, 67 (2018), 229-236. https://doi.org/10.1016/j.apcatb.2006.05.006
M. Piumetti, S. Bensaid, D. Fino, N. Russo, Appl. Catal. B: Environmental 197 (2016) 35-46. https://doi.org/10.1016/j.apcatb.2016.02.023
Wang L., Wang Y., Zhang Y., Yu Y., He H., Qin X., Wang B., Catal. Sci. Techno 6 (2016) 4840-4848. https://doi.org/10.1039/C6CY00180G
G. Zhou, X. He, S. Liu, H. Xie, M. Fu, J. Indust. Eng. Chem 21 (2015) 932–941. https://doi.org/10.1016/j.jiec.2014.04.035
X. Xie.; Y. Li, Z. Liu, M. Haruta, W. Shen, Nature 458 (2009) 746 – 749. https://doi.org/10.1038/nature07877
J. C. Lou, H. W. Yang, C. H. Lin, Aerosol and Air quality Research 9 (2009) 435 – 440. https://doi.org/10.4209/aaqr.2009.05.0027
M. H. Habibi, B. Karimi, J. Indust. Eng. Chem, 20 (2013) 1566 – 1570. https://doi.org/10.1016/J.JIEC.2013.07.048
R. Manigandana, K. Giribabua, R. Suresha, L. Vijayalakshmib, A. Stephenc, V. Narayanana, Chem. Sci. Trans 2 (2013) S47 – S50. https://doi.org/ 10.7598/cst2013.10
A. Hadded, J. Massoudi, E. Dhahri, K. Khirouni, B.F.O.Costa, RSV Adv 10 (2020) 42542 – 42556. https://doi.org/10.1039/D0RA08405K
A.S. Albuquerque, M.V.C. Tolentino, J.D. Ardisson, F.C.C. Moura, R. de Mendonca, W.A.A Macedo, Cream. Int 38 (2012) 2225 – 2231. http://dx.doi.org/10.1016/jceramint.2011.10.071
L. N. Cai, Y. Guo, A. H. Lu, P. Branton, W. C. Li, Journal of Molecular Catalysis A: Chemical 360 (2012) 35–41. http://doi.org/10.1016/j.molcata.2012.04.003
S. Mobini, F. Meshkani, M. Rezaei, The 10th International Chemical Engineering Congress & Exhibition (IChEC 2018), At Isfahan, Iran, 2018.
S. Behar, P. Gonzalez, P. Agulhon, F. Quignard, D. Swierczy ´nski, Catal. Today 189 (2012) 35–41. https://doi.org/10.1016/j.cattod.2012.04.004
B. H. Napruszewska, A. Michalik., A. Walczyk., D. Duraczy ´nska, R. Dula, W. Rojek, L. Lity ´nska-Dobrzy ´nska, K. Bahranowski, E. M. Serwicka, Materials 11 (2018). https://doi.org/10.3390/ma11081365
T. J. Clarke, S. A. Kondrat., S. H. Taylor, Catal. Today 258 (2015) 610-615.
N. Senesi, G.S. Senesi, Encyclopedia of Soils in the Environment: Electron – spin resonance spectroscopy, Elsevier, 2005, 426 – 437. http://doi.org/10.1016/b0-12-348530-4/00209-5
R. B. Irawan, P. Purwanto, H. Hadiyanto, Int Conf Trop Coast Reg Eco-Dev 23 (2015) 86–92. https://doi.org/10.1016/j.proenv.2015.01.013
D. Zhu, L. Wang, W. Yu, H. Xie, Scientific reporters 8 (2018). https://doi.org/10.1038/s41598-018-23174-z
G. Zheng, W. Zhang, R. Shen, J. Ye, Z. Qin, Y. Chao, Scientific Reports 6 (2016). https://doi.org/10.1038/srep22588
L. Chen, T. Zhang, H. Cheng, Ryan M. Richards, Z. Qi, Nanoscale 12 (2020) 17902-179144. https://doi.org/10.1039/D0NR04738D
Muniz F. T. L., Miranda M. A. R., Morilla dos Santos C., Sasaki J. M., Acta Crystallographica Section A Foundations and Advances 72 (2016) 385–390. https://doi.org/10.1107/S205327331600365X
W. Yang, Y. Peng, Y. Wang, H. Liu, Z. Su, W. Yang, J. Chen, W. Si, J. Li, Applied Catalysis B: Environmental, 278 (2020). http://doi.org/10.1016/j.apcatb.2020.119279
M. H. Kim, K. H. Cho, C.H. Shin, S.E. Kang, S.W. Ham, Korean J. Chem. Eng 28 (2011) 1139-1143. http://doi.org/10.1007/s11814-011-0035-3
J. Xue, J. Q. Wang, G. S. Qi, J. Wang, M.Q. Shen, W. Li, J. Catal. 297 (2013) 56–64. https://doi.org/10.1016/j.jcat.2012.09.020
A. Bienholz, R. Blume, A. Knop-Gericke, F. Girgsdies , M. Behren, P. Claus, J. Phys.Chem. C 115 (2011) 999–1005. https://doi.org/10.1021/jp104925k
Z. Wang, Z. Niu, Q. Hao, L. Ban, H. Li, Y.X Zhao, Z. Jiang, Catalysts, 9 (2019). https://doi.org/10.3390/catal9010035
M.H. Kim, K.H. Cho, C.H. Shin, S.E. Kang, S.W. Ham, Korean J. Chem. Eng. 28 (2011) 1139-1143. http://doi.org/10.1007/s11814-011-0035-3
T. Tabakova, E. Kolentsova, D. Dimitrov , K. Ivanov, M. Manzoli , A. M. Venezia, Y. Karakirova, P. Petrova, D. Nihtianova , G. Avdeev, Top Catal 60 (2017) 110–122. https://doi.org/10.3390/catal8110563
T. H. Bennur, D. Srinivas, P. Ratnasamy, Microporous and Mesoporous Materials 48 (2011) 111–118. http://doi.org/10.1016/s1387-1811(01)00345-6
D. V. Azamat, A. Dejneka, J. Lancok, V. A. Trepakov, L. Jastrabik, A. G. Badalyan, Journal of Applied Physics, 111 (2011). http://doi.org/10.1063/1.4723653
L. Kang, M. Zhang, Z.H. Liu, K. Ooi, Spectrochimica Acta Part A 67 (2007) 864–869. https://doi.org/10.1016/j.saa.2006.09.001
A. Azam, A. S. Ahmed, M Oves, M.S Khan, A. Memic, International Journal of Nanomedicine 7 (2012) 3527–3535.
J. Hu, W. B. Li, R. F. Liu, Catalysis Today 314 (2018) 147–153. http://doi:org/10.1016/j.cattod.2018.02.009
DOI: https://doi.org/10.51316/jca.2021.068
Refbacks
- There are currently no refbacks.
*******
Index: Google Scholar; Crossref
---------
Vietnam Journal of Catalysis and Adsorption
Address: Room 302 | C4-5 | Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.
Tel.: +84. 967.117.098 (Dr. Phượng) | Email: editor@jca.edu.vn | FB: JCA.VNACA