Photocatalytic activity of Ag-Ag3PO4/Cellulose aerogel composite for degradation of dye pollutants under visible light irradiation

Hoa Nguyen Thi, Tien Nguyen Trung, Phong Le Hong, Tai Vu Van, Nui Pham Xuan

Abstract


In this research, Ag-Ag3PO4/Cellulose aerogel composite was synthesized using hydrothermal reduction and freeze-drying methods. By combining the photocatalytic activity of the semiconductor Ag-Ag3PO4 and cellulose aerogel synthesized from agricultural waste sources, the synthesized Ag-Ag3PO4/Cellulose aerogel composite has overcome the disadvantages of pure Ag3PO4 and significantly improved the photocatalytic activity. Structural characteristics, morphology, surface area of the materials were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption and UV–vis diffuse reflectance spectroscopy (UV-vis DRS) methods. From the obtained results, composite has narrow bandgap energy (2.275 eV) and excellent catalytic performance in the photodegradation of dye pollutants (99% MB and 77% RY 145 degraded after 4 h, and only a minor change in the efficiency observed after four consecutive tests). It  demonstrates the development of new catalysts made from agricultural waste sources that show high stability, ease of fabrication and can operate in natural light for environmental remediation.


Keywords


Photocatalyst; Ag-Ag3PO4/Cellulose aerogel; photodegradation; dye pollutants

Full Text:

PDF

References


J. G. Mahy, L. Tasseroul, A. Zubiaur, J. Geens, M. Brisbois, M. Herlitschke, R. Herman, B. Heinrichs, and S. D. Lambert, Highly dispersed iron xerogel catalysts for p-nitrophenol degradation by photo-Fenton effects, Microporous Mesoporous Mater., 197 (2014) 164-173, https:// 10.1016/j.micromeso.2014.06.009.

X. Guan, S. Lin, J. Lan, J. Shang, W.Li, Y. Zhan, H. Xiao, and Q. Song, Fabrication of Ag/AgCl/ZIF-8/TiO2 decorated cotton fabric as a highly efficient photocatalyst for degradation of organic dyes under visible light, Cellulose, 26 (2019), 7437–7450, http://dx.doi.org/10.1007/s10570-019-02621-8.

X. Chen, S. Shen, L. Guo, and S. S. Mao, Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev., 110 (2010) 6503-6570, https:// 10.1021/cr1001645.

J. A. Byrne, P. S. M. Dunlop, J. W. J. Hamilton, P. Fernández-Ibáñez, I. Polo-López, P. K. Sharma and A. S. M. Vennard, A review of heterogeneous photocatalysis for water and surface disinfection, Molecules, 20 (2015) 5574-5615, https:// 10.3390/molecules20045574.

X. Fu, J. Wang, D. Huang, S. Meng, Z. Zhang, L. Li, T. Miao, and S. Chen, Trace Amount of SnO2-Decorated ZnSn(OH)6 as Highly Efficient Photocatalyst for Decomposition of Gaseous Benzene: Synthesis, Photocatalytic Activity, and the Unrevealed Synergistic Effect between ZnSn(OH)6 and SnO2, ACS Catal., 6 (2016) 957-968, https:// 10.1021/acscatal.5b02593.

P. Zhang, X. Yang, Z. Zhao, B. Li, J. Gui, D. Liu, and J. Qiu, One-step synthesis of flowerlike C/Fe2O3 nanosheet assembly with superior adsorption capacity and visible light photocatalytic performance for dye removal, Carbon N. Y., 116 (2017) 59-67, https://doi.org/10.1016/j.carbon.2017.01.087.

X. Yu, L. Gao, J. Huang, W. Li, G. Liu, Z. Li, J. Liu, and P. Hu, Construction of hybrid Ag2CO3/AgVO3 nanowires with enhanced visible light photocatalytic activity, Mater. Res. Bull., 101 (2018) 246-252, https://doi.org/10.1016/j.materresbull.2018.01.023.

B. Luo, M. Chen, Z. Zhang, J. Xu, D. Li, D. Xu, and W. Shi, Highly efficient visible-light-driven photocatalytic degradation of tetracycline by a Z-scheme gC3N4/Bi3TaO7 nanocomposite photocatalyst,” Dalt. Trans., 46 (2017) 8431-8438, http://dx.doi.org/10.1039/C7DT01250K.

Z. Yi, J. Ye, N. Kikugawa, T. Kako , S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu and R. L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater., 9 (2010) 559-564, https:// 10.1038/nmat2780.

J. Wang, F. Teng, M. Chen, J. Xu, Y. Song, and X. Zhou, Facile synthesis of novel Ag3PO4 tetrapods and the {110} facets-dominated photocatalytic activity, CrystEngComm, 15 (2013) 39-42, https://doi.org/10.1039/C2CE26060C.

M. A. Gondal, X. Chang, E. I. Wei, Z. H. Yamani, and Q. Zhou, Enhanced photoactivity on Ag/Ag3PO4 composites by plasmonic effect, J. Colloid Interface Sci., 392 (2013) 325–330, https://doi.org/10.1016/j.jcis.2012.09.086.

Y. Liu, L. Fang, H. Lu, Y. Li, C. Hu, and H. Yu, One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4,” Appl. Catal. B Environ., 115 (2012) 245–252, https://doi.org/10.1016/j.apcatb.2011.12.038.

X. Q. Liu, W. J. Chen, and H. Jiang, Facile synthesis of Ag/Ag3PO4/AMB composite with improved photocatalytic performance,” Chem. Eng. J., 308 (2017) 889-896, https:// 10.1016/j.cej.2016.09.125.

B. Liu, Z. Li, S. Xu, T. Cong, L. Tian, C. Ding, and M. Lu, “in situ synthesis of Ag@ Ag3PO4/MWCNT triples hetero-photocatalyst for degradation of malachite green,” Mater. Lett., 131 (2014) 229–232, https://doi.org/10.1016/j.matlet.2014.05.214.

L. Xu, W. Q. Huang, L. L. Wang, G. F. Huang, and P. Peng, Mechanism of superior visible-light photocatalytic activity and stability of hybrid Ag3PO4/graphene nanocomposite,” J. Phys. Chem. C, 118 (2014) 12972–12979, http://dx.doi.org/10.1021/jp5034273.

G. Li and L. Mao, Magnetically separable Fe3O4-Ag3PO4 sub-micrometre composite: Facile synthesis, high visible light-driven photocatalytic efficiency, and good recyclability,” RSC Adv., 2 (2012) 5108-5111, https:// 10.1039/c2ra20504a.

L. Zhang, H. Zhang, H. Huang, Y. Liu, and Z. Kang, Ag3PO4/SnO2 semiconductor nanocomposites with enhanced photocatalytic activity and stability,” New J. Chem., 36 (2012) 1541–1544, https://doi.org/10.1039/C2NJ40206H.

H. Yu, Z. Jiao, H. Hu, G. Lu, J. Ye, and Y. Bi, Fabrication of Ag3PO4-PAN composite nanofibers for photocatalytic applications,” CrystEngComm, 15 (2013) 4802-4805, https:// 10.1039/c3ce00073g.

N. Tavker, U. K. Gaur, and M. Sharma, Agro-waste extracted cellulose supported silver phosphate nanostructures as a green photocatalyst for improved photodegradation of RhB dye and industrial fertilizer effluents, Nanoscale Adv., (2020), https:// 10.1039/d0na00181c.

F. Chen, S. Li, Q. Chen, X. Zheng, P. Liu, and S. Fang, 3D graphene aerogels-supported Ag and Ag@Ag3PO4 heterostructure for the efficient adsorption-photocatalysis capture of different dye pollutants in water, Mater. Res. Bull., 105 (2018) 334-341, https:// 10.1016/j.materresbull.2018.05.013.

S. Dong, L. Cui, C. Liu, F. Zhang, K. Li, L. Xia, X. Su, J. Feng, Y. Zhu, and J. Sun, Fabrication of 3D ultra-light graphene aerogel/Bi2WO6 composite with excellent photocatalytic performance: A promising photocatalysts for water purification, J. Taiwan Inst. Chem. Eng., 97 (2019) 288–296.

J. Cai, S. Kimura, M. Wada, S. Kuga, and L. Zhang, Cellulose aerogels from aqueous alkali hydroxide-urea solution, ChemSusChem, 1 (2008) 149-154, https:// 10.1002/cssc.200700039.

W. Chen, H. Yu, Q. Li, Y. Liu, and J. Li, Ultralight and highly flexible aerogels with long cellulose i nanofibers, Soft Matter, 7 (2011) 20360-20368, https:// 10.1039/c1sm06179h.

G. Tang, Z. G. Jiang, X. Li, H. Bin Zhang, A. Dasari, and Z. Z. Yu, Three dimensional graphene aerogels and their electrically conductive composites, Carbon N. Y., 77 (2014) 592-599, https:// 10.1016/j.carbon.2014.05.063.

Q. B. Thai, S. T. Nguyen, D. K. Ho, T. D. Tran, D. M. Huynh, N. H.N. Do, T. P. Luu, P. K. Le, D. K. Le, N. P. Thien, H. M. Duong, Cellulose-based aerogels from sugarcane bagasse for oil spill-cleaning and heat insulation applications,” Carbohydr. Polym., 228 (2020), https:// 10.1016/j.carbpol.2019.115365.

A. L. Patterson, The scherrer formula for X-ray particle size determination, Phys. Rev., 56 (1939) 978-982, https:// 10.1103/PhysRev.56.978.

A. Kumar, B. Prasad, and I. M. Mishra, Adsorptive removal of acrylonitrile by commercial grade activated carbon: Kinetics, equilibrium and thermodynamics, J. Hazard. Mater., 152 (2008) 589-600, https:// 10.1016/j.jhazmat.2007.07.048.

M. C. Silva, O. R. Lopes, J. L. Colodette, A. O. Porto, J. Rieumont, D. Chaussy, M. N. Belgacemd, and G. G. Silva, Characterization of three non-product materials from a bleached eucalyptus kraft pulp mill, in view of valorising them as a source of cellulose fibres, Ind. Crops Prod., 27 (2008) 288-295, https:// 10.1016/j.indcrop.2007.11.005.

Y. Xu, H. Xu, J. Yan, H. Li, L. Huang, Q. Zhang, C. Huang, and H. Wan, A novel visible-light-response plasmonic photocatalyst CNT/Ag/AgBr and its photocatalytic properties, Phys. Chem. Chem. Phys., 15 (2013) 5821-5830, https:// 10.1039/c3cp44104k.

Y. Min, G. He, Q. Xu, and Y. Chen, Self-assembled encapsulation of graphene oxide/Ag@ AgCl as a Z-scheme photocatalytic system for pollutant removal, J. Mater. Chem. A, 2 (2014) 1294–1301, https://doi.org/10.1039/C3TA13687F.

J. Cai, S. Kimura, M. Wada, and S. Kuga, Nanoporous cellulose as metal nanoparticles support, Biomacromolecules, 10 (2009) 87-94, https:// 10.1021/bm800919e.

S. Liu, D. Ke, J. Zeng, J. Zhou, T. Peng, and L. Zhang, Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix, Cellulose, 18 (2011) 945-956, https:// 10.1007/s10570-011-9556-5.

P. Kubelka and F. Munk, Ein Beitrag zur Optik der Farbanstriche, Zeitschrift für Tech. Phys., (1931), https:// 10.4236/msce.2014.28004.

L. X. Zhong, X. W. Peng, D. Yang, and R. C. Sun, Adsorption of heavy metals by a porous bioadsorbent from lignocellulosic biomass reconstructed in an ionic liquid, J. Agric. Food Chem., 60 (2012) 5621-5628, https:// 10.1021/jf301182x.

W. Teng, X. Li, Q. Zhao, J. Zhao, and D. Zhang, In situ capture of active species and oxidation mechanism of RhB and MB dyes over sunlight-driven Ag/Ag3PO4 plasmonic nanocatalyst, Appl. Catal. B Environ., 125 (2012) 538–545, https://doi.org/10.1016/j.apcatb.2012.05.043.

B. Jiang, Y. Wang, J. Q. Wang, C. Tian, W. Li, Q. Feng, Q. Pan, and H. Fu, InSitu Fabrication of Ag/Ag3PO4/Graphene Triple Heterostructure Visible-Light Photocatalyst through Graphene-Assisted Reduction Strategy, ChemCatChem, 5 (2013) 1359-1367, https:// 10.1002/cctc.201200684.




DOI: https://doi.org/10.51316/jca.2021.062

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA