Adsorption characteristics of 2,4-dichorophenoxy acetic acid onto surfactant modified titania nanoparticles
Abstract
Keywords
Full Text:
PDFReferences
De Castro Marcato, A.C., C.P. de Souza, and C.S. Fontanetti, Herbicide 2,4-D: A Review of Toxicity on Non-Target Organisms. Water, Air, & Soil Pollution, 2017. 228 (3): 120, https://doi.org/10.1007/s11270-017-3301-0.
Islam, F., et al., Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environment international, 2017. 111, https://doi.org/10.1016/j.envint.2017.10.020.
Bakhtiary, S., M. Shirvani, and H. Shariatmadari, Characterization and 2,4-D adsorption of sepiolite nanofibers modified by N-cetylpyridinium cations. Microporous and Mesoporous Materials, 2013 168: 30-36, https://doi.org/10.1016/j.micromeso.2012.09.022.
Dehghani, M., S. Nasseri, and M. Karamimanesh, Removal of 2,4-Dichlorophenolyxacetic acid (2,4-D) herbicide in the aqueous phase using modified granular activated carbon. Journal of Environmental Health Science and Engineering, 2014. 12(1): 28, https://10.1186/2052-336X-12-28
Peterson, M.A., et al., 2,4-D Past, Present, and Future: A Review. Weed Technology, 2017. 30(2): 303-345, https://10.1614/WT-D-15-00131.1
Wen, J., et al., Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese Journal of Catalysis, 2015. 36(12): 2049-2070, https://doi.org/10.1016/S1872-2067(15)60999-8
Behnajady, M., et al., Enhancement of photocatalytic activity of TiO2 nanoparticles by Silver doping: Photodeposition versus liquid impregnation methods. Global Nest Journal, 2008. 10: 1-7, https://doi.org/10.30955/gnj.000485
Fiorenza, R., et al., Selective photodegradation of 2,4-D pesticide from water by molecularly imprinted TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2019. 380: 111872, https://doi.org/10.1016/j.jphotochem.2019.111872
Roy, K., et al., Surface modification of nano titanium dioxide (TiO2) by cationic surfactants and investigation of its effect on the properties of natural rubber (nr) nanocomposites. Rubber Chemistry and Technology, 2019. 93(2): 346-359, https://10.5254/rct.19.84831.
Yusuf, M.M., H. Imai, and H. Hirashima, Preparation of mesoporous TiO2 thin films by surfactant templating. Journal of Non-Crystalline Solids, 2001. 285(1): 90-95, https://doi.org/10.1016/S0022-3093(01)00437-9.
Dao, H., et al., Removal of antibiotic from aqueous solution using synthesized TiO2 nanoparticles: characteristics and mechanisms. Environmental Earth Sciences, 2018. 77, 359. https://doi.org/10.1007/s12665-018-7550-z.
Santhosh, C., et al., Photocatalytic degradation of toxic aquatic pollutants by novel magnetic 3D-TiO2@HPGA nanocomposite. Scientific Reports, 2018. 8(1): 15531, https://doi.org/10.1038/s41598-018-33818-9.
Paz, Y., Application of TiO2 Photocatalysis for air Treatment: Patents' Overview. Applied Catalysis B: Environmental, 2010. 99: 448-460, https://doi.org/10.1016/j.apcatb.2010.05.011.
Viana, M.M., V.F. Soares, and N.D.S. Mohallem, Synthesis and characterization of TiO2 nanoparticles. Ceramics International, 2010. 36(7): 2047-2053, https://doi.org/10.1016/j.ceramint.2010.04.006.
DOI: https://doi.org/10.51316/jca.2021.061
Refbacks
- There are currently no refbacks.
*******
Index: Google Scholar; Crossref
---------
Vietnam Journal of Catalysis and Adsorption
Address: Room 302 | C4-5 | Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.
Tel.: +84. 967.117.098 (Dr. Phượng) | Email: editor@jca.edu.vn | FB: JCA.VNACA