Efficient synthesis of bis(indolyl)methanes by the alkylation of indoles with alcohols using heterogeneous CuFe2O4 catalyst

Tuan Ha Minh, Yen Bui Hoang, Khanh Nguyen Ngoc, Thuan Ngo Thi, Hung Tran Quang, Hoan Vu Xuan, Tuan Dang Thanh

Abstract


Bis(3-indolyl)methanes (BIM) are highly valuable and appear in the core structure of many natural products and pharmacologically active compounds (anticancer, anti-inflammatory, antiobesity, antimetastatic, antimicrobial, etc.). Herein, we have disclosed an air stable and highly efficient CuFe2O4 heterogeneous catalyst for alkylation of indoles with alcohols to give bis(3-indolyl)methanes in very good yields. The CuFe2O4 catalyst has been found to be magnetically recycled at least five times without losing significant catalytic activity.

Keywords


CuFe2O4 catalyst; Sustainable process; Alkylation; Bifunctional catalysis; Indole functionalization Bis(3-indolyl)methane synthesis;

Full Text:

PDF

References


R. J. Sundberg, Indoles, Academic Press, San Diego, 1996.

J. F. Austin, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 1172. https://doi.org/10.1021/ja017255c;

Y. C. Wan, Y. H. Li, C. X. Yan, M. Yan, Z. L. Tang, Eur. J. Med. Chem. 2019, 183, 111691. https://doi.org/https://doi.org/10.1016/j.ejmech.2019.111691.

Y. Zhang, X. R. Yang, H. Zhou, S. L. Li, Y. Zhu, Y. Li, Org. Chem. Front. 2018, 5, 2120. https://doi.org/10.1039/C8QO00341F;

F. Ling, L. Xiao, L. Fang, C. Feng, Z. Xie, Y. Lv, W. Zhong, Org. Biomol. Chem. 2018, 16, 9274. https://doi.org/10.1039/C8OB02805B;

R. R. Jella, R. Nagarajan, Tetrahedron 2013, 69, 10249. https://doi.org/https://doi.org/10.1016/j.tet.2013.10.037.

M. Shiri, M. A. Zolfigol, H. G. Kruger, Z. Tanbakouchian, Chem. Rev. 2010, 110, 2250. https://doi.org/10.1021/cr900195a.;

S. Wang, K. Fang, G. Dong, S. Chen, N. Liu, Z. Miao, J. Yao, J. Li, W. Zhang, C. Sheng, J. Med. Chem. 2015, 58, 6678. https://doi.org/https://doi.org/10.1016/j.ejmech.2014.10.065;

M.-Z. Zhang, Q. Chen, G.-F. Yang, Eur. J. Med. Chem. 2015, 89, 421https://doi.org/https://doi.org/10.1016/j.ejmech.2014.10.065;

S. B. Bharate, J. B. Bharate, S. I. Khan, B. L. Tekwani, M. R. Jacob, R. Mudududdla, R. R. Yadav, B. Singh, P. R. Sharma, S. Maity, B. Singh, I. A. Khan, R. A. Vishwakarma, Eur. J. Med. Chem. 2013, 63, 435. https://doi.org/https://doi.org/10.1016/j.ejmech.2013.02.024;

M. Marrelli, X. Cachet, F. Conforti, R. Sirianni, A. Chimento, V. Pezzi, S. Michel, G. A. Statti, F. Menichini, Nat. Prod. Res. 2013, 27, 2039. https://doi.org/10.1080/14786419.2013.824440.;

J. Lee, Nutr. Cancer 2019, 71, 992. https://doi.org/10.1080/01635581.2019.1577979.

J. A. Joule, K. Mills, Heterocyclic Chemistry, 5th ed., Wiley, UK, 2020. https://doi.org/10.1201/9781003072850;

G. R. Humphrey, J. T. Kuethe, Chem. Rev. 2006, 106, 2875. https://doi.org/10.1021/cr0505270.;

S. L. You, Q. Cai, M. Zeng, Chem. Soc. Rev. 2009, 38, 2190. https://doi.org/10.1039/B817310A.

M. Bandini, A. Eichholzer, Angew. Chem. Int. Ed. 2009, 48, 9608. https://doi.org/10.1002/anie.200901843.;

M. Shiri, M. A. Zolfigol, H. G. Kruger, Z. Tanbakouchian, Chem. Rev. 2010, 110, 2250. https://doi.org/10.1021/cr900195a.

X. Liu, S. Ma, P. H. Toy, Org. Lett. 2019, 21, 9212. https://doi.org/10.1021/acs.orglett.9b03578;

T. Yang, H. Lu, Y. Shu, Y. Ou, L. Hong, C.-K. Au, R. Qiu, Org. Lett. 2020, 22, 827. https://doi.org/10.1021/acs.orglett.9b03578;

C. D. Huo, C. G. Sun, C. Wang, X. D. Jia, W. J. Chang, ACS Sustainable Chem. Eng. 2013, 1, 549. https://doi.org/10.1021/sc400033t;

S. Bayindir, N. A, Saracoglu, RSC Adv. 2016, 6, 72959. https://doi.org/10.1039/C6RA16192H;

G. M. Shelke, V. K. Rao, R. K. Tiwari, B. S. Chhikara, K. Parang, A. Kumar, RSC Adv. 2013, 3, 22346. https://doi.org/10.1039/C3RA44693J;

T. A. Grigolo, S. Denofre, F. Manarin, G. V. Botteselle, P. Brandão, A. Amaral, E. A. de Campos, Dalton Trans. 2017, 46, 15698. https://doi.org/10.1039/C7DT03364H.

S. Whitney, R. Grigg, A. Derrick, A. Keep, Org. Lett. 2007, 9, 3299. https://doi.org/10.1021/ol071274v.

S. Zhang, W. Fan, H. Qu, C. Xiao, N. Wang, L. Shu, Q. Hu, L. Liu, Curr. Org. Chem. 2012, 16, 942. https://doi.org/10.2174/138527212800194827;

A. E. Putra, K. Takigawa, H. Tanaka, Y. Ito, Y. Oe, T. Ohta, Eur. J. Org. Chem. 2013, 6344. https://doi.org/10.1002/ejoc.201300744;

N. Biswas, R. Sharma and D. Srimani, Adv. Synth. Catal., 2020, 362, 2902. https://doi.org/10.1002/adsc.202000326.

H. Hikawa, Y. Yokoyama, RSC Adv. 2013, 3, 1061. https://doi.org/10.1039/C2RA21887A.

S. Badigenchala, D. Ganapathy, A. Das, R. Singh, G. Sekar, Synthesis 2014, 46, 101. https://doi.org/10.1055/s-0033-1340052.

V. Polshettiwar, R. S. Varma, Green Chem. 2010, 12, 743. https://doi.org/10.1039/B921171C;

C. Descorme, P. Gallezot, C. Geantet, C. George, ChemCatChem 2012, 4, 1897. https://doi.org/10.1002/cctc.201200483.;

P. Munnik, P. E. de Jongh, K. P. de Jong, Chem. Rev. 2015, 115, 6687. https://doi.org/10.1021/cr500486u;

L. Liu, A. Corma, Chem. Rev. 2018, 118, 4981. https://doi.org/10.1021/acs.chemrev.7b00776.

R. R. Hosseinzadeh‐Khanmiri, Y. Kamel, Z. Keshvari, A. Mobaraki, G. H. Shahverdizadeh, E. Vessally, M. Babazadeh, Appl. Organomet. Chem. 2018, 32, e4452. https://doi.org/10.1002/aoc.4452.

H. Mohammadi, H. R. Shaterian, ChemistrySelect 2019, 4, 8700. https://doi.org/10.1002/slct.201901586.

R. Hudson, Y. Feng, R. S. Varma, A, Moores, Green Chem. 2014,16, 4493. https://doi.org/10.1039/C4GC00418C;

N. Yan, C. Xiao, Y. Kou, Coord. Chem. Rev. 2010, 254, 1179. https://doi.org/10.1016/j.ccr.2010.02.015.

N. Panda, A. K. Jena, S. Mohapatra, Chem. Lett. 2011, 40, 956. https://doi.org/10.1246/cl.2011.956;

N. Panda, A. K. Jena, S. Mohapatra, S. R. Rout, Tetrahedron Lett. 2011, 51, 1924. https://doi.org/https://doi.org/10.1016/j.tetlet.2011.02.050;

R. Zhang, J. Liu, S. Wang, J. Niu, C. Xia, W. Sun, ChemCatChem 2011, 3, 146. https://doi.org/10.1002/cctc.201000254;

K. Swapna, S. N. Murthy, M. T. Jyothi, Y. V. D. Nageswar, Org. Biomol. Chem. 2011, 5989. https://doi.org/10.1039/C1OB05597F.;

R. Hudson, Synlett 2013, 24, 1309. https://doi.org/10.1055/s-0033-1338949.

P. N. Amaniampong, Q. T. Trinh, J. J. Varghese, R. Behling, S. Valange, S. H. Mushrif, F. Jérôme, Green Chemistry 2018, 20, 2730. https://doi.org/10.1039/C8GC00961A.

P. N. Amaniampong, Q. T. Trinh, K. De Oliveira Vigier, D. Q. Dao, N. H. Tran, Y. Wang, M. P. Sherburne, F. Jérôme, J. Am. Chem. Soc., 2019, 141, 14772. https://doi.org/10.1039/C8GC00961A.

Q. T. Trinh, B. K. Chethana, S. H. Mushrif, J. Phys. Chem. C 2015, 119, 17137. https://doi.org/10.1021/acs.jpcc.5b03534.

J. E. De Vrieze, J. W. Thybaut, M. Saeys, ACS Catal. 2018, 8, 7539. https://doi.org/10.1021/acscatal.8b01652.

C. Sarkar, S. Pendem, A. Shrotri, D. Q. Dao, P. P. T. Mai, T. N. Nguyen, D. R. Chandaka, T. V. Rao, Q. T. Trinh, M. P. Sherburne, J. Mondal, ACS Appl. Mater. Interfaces 2019, 11, 11722. https://doi.org/10.1021/acsami.8b18675.

R. Singuru, Q. T. Trinh, B. Banerjee, B. G. Rao, L. Bai, A. Bhaumik, B. M. Reddy, H. Hirao, J. Mondal, ACS Omega 2016, 1, 1121. https://doi.org/10.1021/acsomega.6b00331.

M. Schlangen, H. Schwarz, Hel. Chim. Acta 2008, 91, 379. https://doi.org/10.1002/hlca.200890043.

Q. T. Trinh, J. Yang, J. Y. Lee, M. Saeys, J. Catal. 2012, 291, 26. https://doi.org/10.1016/j.jcat.2012.04.001.

P. N. Amaniampong, Q. T. Trinh, B. Wang, A. Borgna, Y. Yang, S. H. Mushrif, Angew. Chem. Int. Ed. 2015, 54, 8928. https://doi.org/10.1002/ange.201503916.




DOI: https://doi.org/10.51316/jca.2021.057

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA