A theoretical study on the adsorption of dichlorodiphenyltrichloroethane (DDT) on graphitic carbon nitride (g-C3N4) and g-C3N4 modified with cluster Ni2

Be Pham Thi, Ha Nguyen Thi Thu, Ha Nguyen Ngoc

Abstract


A robust and accurate tight-binding quantum chemical method was performed to study adsorption process of dichlorodiphenyltrichloroethane (DDT) on graphitic carbon nitride (g-C3N4) and  g-C3N4 modified with nickel cluster (Ni2). The adsorption energy, charges on atoms, bond orders have been calculated and analysed. The obtained results indicate that the adsorption of DDT on the pristine g-C3N4 is physical of nature. Ni2 cluster can be easily doped on g-C3N4 due to the formation of chemical bonds. The Ni2-g-C3N4 system exhibits enhanced adsorption ability for DDT.

Keywords


DDT; g-C3N4; cluster; nickel; POPs; adsorption; GFN-xTB

Full Text:

PDF

References


https://chm.pops.int/

https://thuvienphapluat.vn/van-ban/Tai-nguyen-Moi-truong/Quyet-dinh-184-2006-QD-TTg-ke-hoach-quoc-gia-thuc-hien-cong-uoc-Stockholm-cac-chat-o-nhiem-huu-co-kho-phan-huy-13629.aspx

A. Pariatamby, Y.L. Kee, Procedia Environ. Sci. 31 (2016) 842-848. https://doi.org/10.1016/j.proenv.2016.02.093

R. Islam, S. Kumar, J. Karmoker, Md.A. Rahman, N. Biswas, Thi Kim Anh Tran, M.M. Rahman, Environ. Technol. 12 (2018) 115-131. https://doi.org/10.1016/j.eti.2018.08.002

S. Kucher, J. Schwarzbauer, Chemosphere 185 (2017) 529-538. ttps://doi.org/10.1016/j.chemosphere.2017.07.041

B.M. Sharma, G.K. Bharat, S.Tayal, L. Nizzetto, P. Čupr, T. Larssen, Environ. Int. 66 (2014) 48-64. https://doi.org/10.1016/j.envint.2014.01.022

S.M. Snedeker, Environ. Health Perspect. 109 (2001) 35-47. https:// 10.1289/ehp.01109s135.

Y. Pi, X. Li, Q. Xia, J. Wu, Y. Li, J. Xiao, Z. Li, Int. J. Chem. Eng. 337 (2018) 351-371. https://doi.org/10.1016/j.cej.2017.12.092

D. Megson, E.J. Reiner, K.J. Jobst, F.L. Dorman, M. Robson, J.F. Focant, Anal. Chim. Acta. 941 (2016) 10-25. https://doi.org/10.1016/j.aca.2016.08.027

X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, J. Harard. Mater. 338 (2017) 102-123. https://doi.org/10.1016/j.jhazmat.2017.05.013

M. Anbia, M. Haqshenas, Int. J. Environ. Sci. Technol. 12 (2015) 2649–2664. https://doi.org/10.1016/j.jece.2020.104411

H. Chen, T. Yan, F. Jiang, J. Taiwan Inst. Chem. Eng. 45 (2014) 1842–1849. https://doi.org/10.1016/j.jtice.2014.03.005

C. Shen, C. Chen, T. Wen, Z. Zhao, X. Wang, A. Xu, J. Colloid Interface Sci. 456 (2015) 7–14. https://doi.org/10.1016/j.jcis.2015.06.004

X. Ding, J. Zhu, Y. Zhang, Q. Xia, W. Bi, X. Yang, J. Yang, Talanta 154 (2016) 119–126. https://doi.org/10.1016/j.talanta.2016.03.065

B. Zhu, P. Xia, W. Ho, J. Yu, Appl. Surf. Sci. 344 (2015) 188–195. https://doi.org/10.1016/j.apsusc.2015.03.086

T. Yan, H. Chen, F. Jiang, X. Wang, , J. Chem. Eng. Data. 59 (2014) 508–515. https://doi.org/10.1016/j.jece.2020.104411

T. Yan, H. Chen, X. Wang, F. Jiang, RSC Adv. 3 (2013) 22480–22489. https://doi.org/10.1039/C3RA43312A

J. Jiang, S. Cao, C. Hu, C. Chen, Chinese J. Catal. 38 (12) (2017), 1981-1989. https://doi.org/10.1016/S1872-2067(17)62936-X

H. Zhang, A. Du, N.S. Gandhi, Y. Jiao, Y. Zhang, X. Lin, X. Lu, Y. Tang, Appl. Surf. Sci. 455 (2018) 1116-1122. https://doi.org/10.1016/j.apsusc.2018.06.034

L. Tzu-Jen, C. Cheng-chau, Phys. Chem. Chem. Phys. 22 (2020) 647-657. https://doi.org/10.1039/C9CP06175D

Z. Gaoa , A. Lia , X. Liua , C. Maa , X. Lia , W. Yanga, X. Dingb, Appl. Surf. Sci. 481 (2019) 940-950. https://doi.org/10.1016/j.apsusc.2019.03.186

S. Grimme, C. Bannwarth, and P. Shushkov, J. Chem. Theory Comput. 13(5) (2017) 1989-2009. https://doi.org/10.1021/acs.jctc.7b00118

Christoph Bannwarth, Sebastian Ehlert, Stefan Grimmr, J . Chem. Theory Comput. 15(3) (2019) 1652–1671. https://doi.org/10.1021/acs.jctc.8b01176

I. Mayer, J. Comput. Chem. 28 (2007) 204-221. https://doi.org/10.1002/jcc.20494

M.A. Iramain, M.V. Castillo, L. Davies, M.E. Manzur, S.A. Brandán, J. Mol. Struct. 1199 (2020) 126964. https://doi.org/10.1016/j.molstruc.2019.126964

S. Hovmoller, G. Smith, C.H.L. Kennard, Acta Crystallogr. B34 (1978) 3016-3021. https://doi.org/10.1107/S0567740878009942

B. Zhu, S. Wageh, A.A. Al-Ghamdi, S. Yang, Z. Tian, J. Yu, Cat. Today. 335 (2019) 117-127. https://doi.org/10.1016/j.cattod.2018.09.038

J.C. Slater, J. Chem. Phys. 41 (1964) 3199. https://doi.org/10.1063/1.1725697

E.M. Pérez, N. Martín, Chem. Soc. Rev. 44 (2015) 6425-6433, https://doi.org/10.1039/C5CS00578G

D.T. Vodak, K. Kim, L. Iordanidis, Chem Eur J. 9 (2003) 4197-4201. https:// 10.1002/chem.200304829

Q. Hao, S. Hao, X. Niu, X. Li, D. Chen, H. Ding, Chinese J. Catal. 38 (2) (2017) p. 278-286. https://doi.org/10.1016/S1872-2067(16)62561-5

J. Liu, H. Shi, Q. Shen, C. Guo and G. Zhao, Green Chem. 19 (2017) 5900-5910. https://doi.org/10.1039/C7GC02657A

S. Goel, A.E. Masunov, J Mol Model. 18 (2012) 783–790. https://10.1007/s00894-011-1100-x

E. K. Parks, L. Zhua, J. Ho, and S. J. Riley, J. Chem. Phys. 100 (1994) 7206. https:// 10.1063/1.466868

P. Panigrahi, A. Kumar, A. Karton, R. Ahuja, T. Hussain, Int. J. Hydrog. Energy, 45(4) (2020) 3035-3045. https://doi.org/10.1016/j.ijhydene.2019.11.184.

J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391 (2017) 72-123. https://doi.org/10.1016/j.apsusc.2016.07.030

P. Pracht, F. Bohle, S. Grimme. Phys. Chem. Chem. Phys. 22 (2020) 7169-7192, https://doi.org/10.1039/C9CP06869D




DOI: https://doi.org/10.51316/jca.2021.051

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA