Synthesis of Expanded Graphite: Effect of the graphite flake size on adsorption capacities to Methylene Blue

Chien Hoang Thi, Ly Vu Thi Huong, Thao Tran Thi, Thuy Vu Thi, Ngan Nguyen Thi, Thanh Nguyen Hai, Tan Vu T.

Abstract


For the first time, the expansion grade of graphite was studied through the effect of the flake size. The result shown the larger flake size exhibits a higher expansion grade.  In addition, the more expanded material, the higher specific surface area can be obtained. The synthesized expanded graphites were used for the adsorption of methylene blue. The expanded graphite with the highest expansion grade displayed the highest adsorption capacity due to its specific surface area.

Keywords


Expanded Graphite; Adsorption; Flake size; Methylene Blue

Full Text:

PDF

References


T. T. Vu, L. del Río, T. Valdés-Solís, y G. Marbán, «Stainless steel wire mesh-supported ZnO for the catalytic photodegradation of methylene blue under ultraviolet irradiation», Journal of Hazardous Materials, vol. 246-247, pp. 126-134, feb. 2013, https:// 10.1016/j.jhazmat.2012.12.009.

S. H. Lin y S. J. Ho, «Treatment of high-strength industrial wastewater by wet air oxidation—A case study», Waste Management, vol. 17, n.o 1, pp. 71-78, ene. 1997, https:// 10.1016/S0956-053X(97)00039-1.

J. Qu, «Research progress of novel adsorption processes in water purification: A review», Journal of Environmental Sciences, vol. 20, n.o 1, pp. 1-13, ene. 2008, https:// 10.1016/S1001-0742(08)60001-7.

J. L. Sanz y T. Köchling, «Molecular biology techniques used in wastewater treatment: An overview», Process Biochemistry, vol. 42, n.o 2, pp. 119-133, feb. 2007, https:// 10.1016/j.procbio.2006.10.003.

M. N. Chong, B. Jin, C. W. K. Chow, y C. Saint, «Recent developments in photocatalytic water treatment technology: A review», Water Research, vol. 44, n.o 10, pp. 2997-3027, may 2010, https:// 10.1016/j.watres.2010.02.039.

J. Akhtar, N. A. S. Amin, y K. Shahzad, «A review on removal of pharmaceuticals from water by adsorption», Desalination and Water Treatment, vol. 57, n.o 27, pp. 12842-12860, jun. 2016, doi: 10.1080/19443994.2015.1051121.

S. Tan, P. Shi, R. Su, y M. Zhu, «Removal of Methylene Blue from Aqueous Solution by Powdered Expanded Graphite: Adsorption Isotherms and Thermodynamics», Advanced Materials Research, vol. 424-425, pp. 1313-1317, ene. 2012, https:// 10.4028/www.scientific.net/AMR.424-425.1313.

R. Goudarzi y G. Hashemi Motlagh, «The effect of graphite intercalated compound particle size and exfoliation temperature on porosity and macromolecular diffusion in expanded graphite», Heliyon, vol. 5, n.o 10, oct. 2019, https:// 10.1016/j.heliyon.2019.e02595.

Synthesis and Characterization of Highly Intercalated Graphite Bisulfate | Nanoscale Research Letters | Full Text. https://nanoscalereslett.springeropen.com/articles/10.1186/s11671-017-1930-2 (accedido ene. 07, 2021).

E. H. L. Falcao et al., «Microwave exfoliation of a graphite intercalation compound», Carbon, vol. 45, n.o 6, pp. 1367-1369, may 2007, https:// 10.1016/j.carbon.2007.01.018.

Y. C. Sharma y Uma, «Optimization of Parameters for Adsorption of Methylene Blue on a Low-Cost Activated Carbon», J. Chem. Eng. Data, vol. 55, n.o 1, pp. 435-439, ene. 2010, https:// 10.1021/je900408s.

Methylene Blue Adsorption from Aqueous Solution by Magnetic Cellulose/Graphene Oxide Composite: Equilibrium, Kinetics, and Thermodynamics | Industrial & Engineering Chemistry Research». https://pubs.acs.org/doi/abs/10.1021/ie4027154 (accedido ene. 07, 2021).




DOI: https://doi.org/10.51316/jca.2021.046

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA