Green synthesis of cuprous oxide (Cu2O) nano particles using aloe vera plant

Giang Nguyen Thi Le, Tu Nguyen Cong, Thang Pham Van, Mai Nguyen Thi Tuyet, Lan Nguyen Thi, Chinh Huynh Dang, Dung Ta Ngoc, Cuong Le Manh, Anh Luu Thi Lan

Abstract


In the present work,  a green synthesis of  cuprous oxide nanoparticles  was demonstrated using the freshly prepared aqueous extract of the aloe vera plant and the cupper oxide nanoparticles  were characterized by the analytical techniques such as UV-Vis, FT-IR, XRD, and EDX. Characterization techniques confirmed that the biomolecules involved  in the formation of cupper oxide nanoparticles and also they stabilized the nanoparticles.

Keywords


Green synthesis; cuprous oxide; and aloe vera

Full Text:

PDF

References


Kanchi, Suvardhan; Ahmed, Shakeel, Green Synthesis, Characterization and Applications of Nanoparticles, Elsevier Inc., 2019, p.501.

A. Bumajdad, J. Eastoe, M.I. Zaki, R.K. Heenan, L. Pasupulety, J. Colloid Int. Sci. 312 (2007) 68-75. https://10.1016/j.jcis.2006.09.007

S. Deepika, R.H. Kumar, C.I. Selvaraj, S.M. Roopan, Scrivener Publishing LLC, 2018, p.164.

T. Huang, K. Jiang, D. Chen, G. Shen, Chinese Chem. Lett. 29(4) (2018) 553–563. https:// 10.1016/j.cclet.2017. 12.007

J. D. Kwon et al., Appl. Surf. Sci. 285 (2013) 373-379. https://10.1016/j.apsusc.2013.08.063

L.J. Minggu, K.H. Ng, H.A. Kadir, M.. Kassim, Ceram. Int. 40(10) (2014) 16015–16021. https://10.1016/j.ceramint.2014. 07.135.

X.Z. Chu et al., Ceram. Int. 43(11) (2017) 8222–8229. https://10.1016/j.ceramint.2017.03.150

M. Kumar, R.R. Das, M. Samal, K. Yun, Mater. Chem. Phys. 218 (2018) 272–278. https://10.1016/j.matchemphys. 2018.07.048

S. Sun, X. Zhang, Q. Yang, S. Liang, X. Zhang, Prog. Mater. Sci. 96 (2018) 111-173, https://10.1016/j.pmatsci.2018.03.006

T. Li, M. He, W. Zeng, J. Alloys Compd. 712(25) (2017) 50-58. https://10.1016/j.jallcom. 2017.04.057

Q. Guo, Y. Li, W. Zeng, Physical E. 114 (2019) 113564-113585. https://10.1016/j.physe.2019.113564

X.L. Luo, M.J. Wang, D.S. Yang, J. Yang, Y.S. Chen, J. Industr. Eng. Chem. 32 (2015) 313-318. https://10.1016/j.jiec.2015.09.015

M.I. Ghouri, E. Ahmed, Ceram. Int. 45(17) (2019) 23196–23202. https://10.1016/j.ceramint.2019.08. 015

F. Baig, Y.H. Khattak, B.M. Soucase, S.Beg, S. Ullah, Mater. Sci. Semi. Proc. 88 (2018) 35–39. https://10.1016/j.mssp.2018.07.031

X.L. Luo, M.J. Wang, Y. Chen, Solid State Sci. 50 (2015) 101–106. https://10.1016/j.solidstatesciences. 2015. 10.013

T.D. Musho, C. Wildfire, N.M. Houlihan, E.M. Sabolsky, D. Shekhawat, Mater. Chem. Phys. 216 (2018) 278-284. htps://10.1016/j.matchemphys.2018. 05.059

M.S. Aguilar, G. Rosas, Environ. Nanotechnol. Monit. Manag. (2019) 1-23. https://10.1016/j.enmm.2018.100195

C. Ramesh, M. HariPrasad and V. Ragunathan, Current Nanoscience, 7 (2011) 995-999. https::// 10.2174/1573413 11798220781

P. Li, W. Lv, S. Ai, J. Experimen. Nanosci. 11(1) (2016) 18-27. https://10.1080/17458080.2015.1015462

M. Behera and G. Giri, Mater. Sci. Pollution 32(4) (2014) 702-708. https://10.2478/s13536-014-0255-4

S. Sampaio and J.C. Viana, Mater. Sci. Engiberring B 263 (2021) 114807-114819. https://10.1016/j.mseb.2020. 114807

M. Balık, V. Bulut, I.Y. Erdogan, Inter. J. Hydrogen Energy 44(34) (2019) 18744-18755. https://10.1016/j.ijhydene.2018. 08.159

J. F. Xu, et al., J. Raman Spectrosc. 30 (1999) 413-415. https://10.1002/(sici)1097-4555(199905)30:5<413::aid jrs387>3.0.co;2-n

H.C.A. Murthy, B. Abebe, T. Desalegn C.H. Prakash and K. Shantaveerayya, Mater. Sci. Res. India 15(3) (2018) 279-295. http://dx.doi.org/10.13005/msri/ 150311




DOI: https://doi.org/10.51316/jca.2021.028

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA