Characteristics and activity of Ni/CeO2 catalyst modified by Cr2O3 in combined steam and CO2 reforming of CH4

Phuong Phan Hong, Anh Nguyen Phung, Huy Tran Anh, Tri Nguyen, Loc Luu Cam

Abstract


A series of 10%wtNiO/CeO2-nanorod catalyst without and with Cr2O3 additive was prepared by simultaneous impregnation method. Several techniques, including N2 physisorption measurements, X-ray powder diffraction (XRD), temperature-programmed reduction using H2 (H2-TPR), CO2 temperature-programmed desorption (CO2-TPD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used to investigate catalysts’ physico-chemical properties. The activity of the catalysts in combined steam and CO2 reforming of CH4 (BRM) was investigated at temperature range of 550-800 °C. The results showed that 10%NiO0.1%Cr2O3/CeO2 catalyst had the best catalytic performance due to a better reducibility and basicity. At 700 °C and CH4:CO2:H2O molar ratio in feed stream of 3:1.2:2.4, both conversion of CH4 and CO2 on this catalyst reached 98.5%.

Keywords


CeO2 nanorods; Nickel catalyst; Cr2O3 additive; combined steam; CO2 reforming of CH4

Full Text:

PDF

References


K. Takanabe, K. Nagaoka, K. Nariai, and K.Aika, J. Catal., 232(2005) 268-275. https://doi.org/10.1016/j.jcat.2005.03.011

M. García-Diéguez, I. S. Pieta, M. C. Herrera, M. A. Larrubia, and L. J. Alemany, Appl. Catal. A: General 377(2010) 191-199. https://doi.org/10.1016/j.apcata.2010.01.038

F. Menegazzo, M. Signoretto, F. Pinna, P. Canton, and N. Pernicone, Appl. Catal. A: General 439-440(2012) 80-87. https://doi.org/10.1016/j.apcata.2012.06.041

L. C. Loc, P. H. Phuong, D. Putthea, N. Tri, N. T. T. Van, and H. T. Cuong, Inter. J. Nanotechnol., 15(2018) 968-982. https://doi.org/10.1504/IJNT.2018.099935

A. Vita, C. Italiano, M. A. Ashraf, L. Pino, and S. Specchia, Inter. J. Hydro. Ener. 43(2018) 11731-11744. https://doi.org/10.1016/j.ijhydene.2017.11.140

W. Shan, M. Luo, P. Ying, W. Shen, and C. Li, Appl. Catal. A: General 246(2003) 1-9. https://doi.org/10.1016/S0926-860X(02)00659-2

S. Li, J. L. Falconer, and R. D. Noble, 18 (2006), 2601-2603. https://doi.org/10.1002/adma.200601147

P. X. Huang, F. Wu, B. L. Zhu, X. P. Gao, H. Y. Zhu, T. Y. Yan, W. P. Huang, S. H. Wu, and D. Y. Song, J. Phys. Chem. B, 109(2005) 19169-19174. https://doi.org/10.1021/jp052978u

N. Wang, W. Qian, W. Chu, and F. Wei, Catal. Sci. Technol. 6(2016) 3594-3605. https://doi.org/10.1039/C5CY01790D

B. Xu, Q. Zhang, S. Yuan, M. Zhang, and T. Ohno, Chem. Eng. J. 260(2015) 126-132. https://doi.org/10.1016/j.cej.2014.09.001

X. Du, D. Zhang, L. Shi, R. Gao, and J. Zhang, J. Phys. Chem. C 116(2012) 10009-10016. https://doi.org/10.1021/jp300543r

R. Peng, X. Sun, S. Li, L. Chen, M. Fu, J. Wu, and D. Ye, Chem. Eng. J. 306(2016) 1234-1246. https://doi.org/10.1016/j.cej.2016.08.056

S. H. Seok, S. H. Choi, E. D. Park, S. H. Han, and J. S. Lee, J. Catal. 209(2002) 6-15. https://doi.org/10.1006/jcat.2002.3627

W. J. Jang, D. W. Jeong, J. O. Shim, H. M. Kim, W. B. Han, J. W. Bae, and H. S. Roh, Renew. Ener. 79(2015) 91-95. https://doi.org/10.1016/j.renene.2014.08.032

M. Yang and H. Papp, Catal. Today 115(2006) 199-204. https://doi.org/10.1016/j.cattod.2006.02.047




DOI: https://doi.org/10.51316/jca.2021.017

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA