Fabrication and characterisation of Fe2O3/chitosan aerogel-like spheres

Nhan Dang Thi Thanh, Don Truong Thi, Thang Le Quoc, Tien Tran Dong, Son Le Lam

Abstract


Presently, biopolymer materials have been given more attention for their outstanding properties, high efficiencies and promising applications in various fields. In this study, Fe2O3/chitosan aerogel-like spheres were successfully prepared from chitosan and FeCl3 by sol–gel process and freeze-drying to provide high-surface area materials. The factors affecting the material synthesis have been studied. The asprepared Fe2O3/chitosan material was characterized by Infrared Spectroscopy (IR), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) methods. The results showed that the aerogel spheres have a hollow structure made of chitosan nanofibril networks. Fe2O3 nanoparticles get high crystallinity and have an average particle size of 33 nm.

Keywords


Biopolymer; Fe2O3/chitosan; nanocomposite; aerogel-like spheres

Full Text:

PDF

References


Shahid-ul-Islam, M. Shahid, F. Mohammad, Ind. Eng. Chem. Res. 52 (2013) 5245–5260. https://:10.1021/ie303627x.

V. Zargar, M. Asghari, A. Dashti, ChemBioEng Rev. 3 (2015) 204–226. https://10.1002/cben.201400025.

F. Quignard, R. Valentin, F. Di Renzo, New J. Chem., 32 (2008), 1300–1310. https://10.1039/b808218a.

S. Wei, Y. C. Ching, C. H. Chuah, Carbohydr. Polym. 231 (2020) 115744. https://10.1016/j.carbpol.2019.115744.

M.A. Al-Anber, W. Al-Quaisi, J. Environ. Pollut. Manag. 2 (2019) 105–117. https:// 10.1007/BF02708296.

S. Rashid, C. Shen, X. Chen, S. Li, Y. Chen, Y. Wen, J. Liu, RSC Adv. 5 (2015) 90731–90741. https://10.1039/C5RA14711E.

M. Rhazi, J. Desbri, A. Tolaimate, M. Rinaudo, P. Vottero, A. Alagui, M. El Meray, Eur. Polym. J. 38 (2002), 1523–1530. https://10.1016/S0014-3057(02)00026-5

T. Altun, Environ. Eng. Res., 25 (2020) 426–438. https:// doi.org/10.4491/eer.2019.112.

A. Badawi, E. M. Ahmed, N. Y. Mostafa N.Y., F. A. Wahab, S. E. Alomairy, J. Mater. Sci. Mater. Electron., 28 (2017) 10877–10884. https://:10.1007/s10854-017-6866-x.

B.R. Broujeni, A. Nilchi, A.H. Hassani, R. Saberi, Water Sci. Technol. 78, 708–719. https://10.2166/wst.2018.343.

S. C. Bhatia, N. Ravi, Biomacromolecules 1 (2000) 413–417. https://:10.1021/bm0002959.

Đặng Thị Thanh Nhàn, Lê Lâm Sơn, Lê Quốc Thắng, Tạp chí Hóa học 56 (2018) 384-388. https:// 10.1002/vjch.201800046

S. Patnaik, P. C. Mishra, R. N. Nayak, A. K. Giri, J. Anal. Bioanal. Tech. 7 (2016) 326-332. https://: 10.4172/2155-9872.1000326

M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic, M. Panjan, J. Alloys Compd. 792 (2019) 599–609. https://:10.1016/j.jallcom.2019.03.414.

M. Wang, Y. Ma, Y. Sun, S. Y. Hong, S. K. Lee, B. Yoon, L. Chen, L. Ci, J.-D. Nam, X. Chen, J. Suhr, Sci. Rep., 7 (2017) p. 10854. https://10.1038/s41598-017-18302-0.

Hernandez R.B., Franco A.P., Yola O.R., A. López-Delgado, J. Felcman, M. A. L. Recio, A. L. R. Mercê, J. Mol. Struct. 877 (2008) 89–99. https://10.1016/j.molstruc.2007.07.024.

O. M. Lemine. Adv. Mater. Sci. Eng., 2014 (2014), 1–6. https:// dx.doi.org/10.1155/2014/589146.

Y. Wang, A. Muramatsu, T. Sugimoto, Colloids Surfaces A Physicochem. Eng. Asp. 134 (1998) 281–297. https://doi.org/10.1016/S0927-7757(97)00102-7.




DOI: https://doi.org/10.51316/jca.2021.012

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA