Synthesis of material MOFs (Fe-BTC) by mechanic-chemical method and its application in the reactive dye degradation

Tuan Vu Anh, Hoa Vu Thi, Manh Nguyen Ba, Giang Le Ha, Trang Pham Thi Thu, Hoa Nguyen Thi Thanh, Doanh Truog Cong, Tai Bui Manh

Abstract


Nano Fe-BTC materials were successfully synthesized by mechanical chemical grinding method. Samples were characterized by X-ray difraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N2 adsorption–desorption, Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS). SEM image of Fe-BTC-60 showed the particle size of 40–60 nm. Fe-BTC nanocomposites were tested for the photocatalytic degradation of reactive yellow 145 (RY-145) in aqueous solution. Fe-BTC composites exhibited high photocatalytic activity. Thus, at pH of 3 and high initial concentration of 100 mg RY-145/L, removal efficiency reached the value of 97.45% after 90 min of reaction.

Keywords


MOFs (Fe-BTC); chemical mechanism method; photocatalytic degradation

Full Text:

PDF

References


Liyu Chen, Hao-Fan Wang, Caixia Li and Qiang Xu (2020) Chem. Sci, 11, 5369. https://doi.org/10.1039/D0SC01432J.

Dan W (2018) Inorg. Chem. Front., 2018,5, 1760-1779. https://doi.org/10.1039/C8QI00149A

Lan X, Huang N, Wang J, Wang T (2018). Chem Commun 54 584–587. https://doi.org/10.1039/C7CC08244D

Diring S, Furukawa S, Takashima Y et al (2010). Chem Mater 22 4531–4538. https://doi.org/10.1021/cm101778g

Majewski MB, Noh H, Islamoglu T, Farha OK (2018) J Mater Chem A 6 7338–7350, https://doi.org/10.1039/C8TA02132E

Anne Pichon, Ana Lazuen-Garay and Stuart L. James (2006) CrystEngComm, 8, 211–214 | 211. https:// 10.1039/b513750k

Heng Zhang, Jing Zhong, Guoxiang Zhou, Junliang Wu, Zhenyu Yang and Xianming Shi (2016) Journal of Nanomaterials Volume 2016 https://doi.org/10.1155/2016/9648386

Hoa T. Vu, Manh B. Nguyen, Tan M. Vu, Giang H. Le, Trang T. T. Pham, Trinh Duy Nguyen & Tuan A. Vu (2020) Topics in Catalysis. https://doi.org/10.1007/s11244-020-01289-w

Li P, Klet RC, Moon SY et al (2015) Chem Commun 51:10925–10928. https://doi.org/10.1039/C5CC03398E

Hu S, Liu M, Guo X et al (2017) Cryst Growth Des 17 6586–6595. https://doi.org/10.1021/acs.cgd.7b01250

Torres-Luna JA, Giraldo-Gómez GI, Sanabria-González NR, Carriazo JG (2019). Bull Mater Sci 42 137. https://doi.org/10.1007/s12034-019-1817-1.

Majano G, Ingold O, Yulikov M et al (2013). CrystEngComm 15 9885–9892. https://doi.org/10.1039/C3CE41366G

Vuong GT, Pham MH, Do TO (2013). CrystEngComm 15 9694–9703. https://doi.org/10.1039/C3CE41453A

Nguyen TT, Le GH, Le CH et al (2018). Mater Res Express 5 115005. https://10.1088/2053-1591/aadce1

Wang B, Liu W, Zhang W, Liu J (2017). Nano Res 10 3826–3835. https://doi.org/10.1007/s12274-017-1595-2

Pham XN, Pham DT, Ngo HS et al (2020). Chem Eng Commun. https://doi.org/10.1080/00986445.2020.1712375




DOI: https://doi.org/10.51316/jca.2021.004

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA