Enhanced photocatalytic degradation performance of bisphenol A over TiO2-SiO2 photocatalyst by improving specific surface area under simulation natural light

Minh-Vien Le, Tai Huynh Huu, Oanh Nguyen Thi Kieu, Thang Ngo Manh, Suong Ho Thi Ngoc

Abstract


The application of natural light in photocatalytic process is a potential energy source. In this study, TiO2-SiO2 nanoparticles with outstandingly enhanced photocatalytic activity have been fabricated by sol-gel method. The prepared photocatalysts with different molar ratio of TiO2:SiO2 as 100:0; 95:5; 85:15 and 75:25 were denoted as TiO2, TS5, TS15 and TS25, respectively. Characterization of these photocatalysts was evaluated using transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 Adsorption and Desorption isotherms method (Brunauer–Emmet–Teller, BET). The specific surface area was improved in TiO2-SiO2 photocatalyst namely 193.9 m2.g-1 (at molar ratio of TiO2:SiO2 of 95:5) compared to 33.6 m2.g-1 of TiO2. The crystallite size was calculated around 5 nm from XRD data and uniform particle size distribution was observed in TEM image. The photocatalytic experiments were performed with bisphenol A (BPA) as model compound of organic pollutant. The effect of various operation parameters such as initial concentration, initial solution pH and photocatalyst dosage has been investigated. The kinetic studies of the photocatalytic degradation BPA over TS5 followed the pseudo-first order (k=1.09×10-2 min-1) and degradation yield to be 82.4% BPA, at pH6.23, initial concentration to be 10 ppm and photocatalyst dosage to be 1.0 g.L-1. The photocatalyst TS5 maintained activity after four cycles and remained 78%. The TiO2-SiO2 composite photocatalyst has shown to be a promising heterogeneous photocatalyst for organic degradation.

Keywords


TiO2-SiO2 photocatalyst; Bisphenol A; Simulated Natural Light

Full Text:

PDF

References


M. C. Ortega-Liebana et al., Extraordinary sensitizing effect of co-doped carbon nanodots derived from mate herb: Application to enhanced photocatalytic degradation of chlorinated wastewater compounds under visible light, 218, (2017) 68-79. https://doi.org/10.1016/j.apcatb.2017.06.021

Y. He, N. B. Sutton, H. H. Rijnaarts, and A. A. J. A. C. B. E. Langenhoff, Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation, 182, (2016) 132-141,. https://doi.org/10.1016/j.apcatb.2015.09.015

S. Chakraborty et al., Photocatalytic hollow fiber membranes for the degradation of pharmaceutical compounds in wastewater, 5, 5, (2017) 5014-5024,. https://doi.org/10.1016/j.jece.2017.09.038

Z. Wu, X. Yuan, J. Zhang, H. Wang, L. Jiang, and G. J. C. Zeng, Photocatalytic decontamination of wastewater containing organic dyes by metal–organic frameworks and their derivatives, 9, 1, (2017) 41-64,. https://doi.org/10.1002/cctc.201600808

S. Xu, Y. Lv, X. Zeng, and D. J. C. E. J. Cao, ZIF-derived nitrogen-doped porous carbons as highly efficient adsorbents for removal of organic compounds from wastewater, 323, (2017) 502-511. https://doi.org/10.1016/j.cej.2017.04.093

N. Mukwevho et al., Removal of naphthalene from simulated wastewater through adsorption-photodegradation by ZnO/Ag/GO nanocomposite, 81, (2020) 393-404. https://doi.org/10.1016/j.jiec.2019.09.030

P. Li et al., Ternary semiconductor metal oxide blends grafted Ag@ AgCl hybrid as dimensionally stable anode active layer for photoelectrochemical oxidation of organic compounds: Design strategies and photoelectric synergistic mechanism, 362, (2019) 336-347. https://doi.org/10.1016/j.jhazmat.2018.09.041

K. Okada, N. Yamamoto, Y. Kameshima, A. Yasumori, and K. J. J. J. o. t. A. C. S. MacKenzie, Effect of silica additive on the anatase‐to‐rutile phase transition, 84, 7, (2001) 1591-1596,. https://doi.org/10.1111/j.1151-2916.2001.tb00882.x

V. Ramamoorthy, K. Kannan, A. I. Joice Joseph, T. Kanagaraj, S. J. J. o. N. Thiripuranthagan, and Nanotechnology, Photocatalytic degradation of acid orange dye using silver impregnated TiO2/SiO2 composite catalysts, 16, 9, (2016) 9980-9986. https://doi.org/10.1166/jnn.2016.12071

V. G. Parale, T. Kim, K.-Y. Lee, V. D. Phadtare, R. P. Dhavale, and H.-H. J. C. I. Park, Hydrophobic TiO2–SiO2 composite aerogels synthesized via in situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity, 46, 4, (2020) 4939-4946. https://doi.org/10.1016/j.ceramint.2019.10.231

F. Li, B. Cao, R. Ma, J. Liang, H. Song, and H. J. T. C. J. o. C. E. Song, Performance of Cu/TiO2‐SiO2 catalysts in hydrogenation of furfural to furfuryl alcohol, 94, 7, (2016) 1368-1374. https://doi.org/10.1002/cjce.22503

X. Chen, H. Sun, J. Zhang, Y. Guo, and D.-H. J. J. o. M. L. Kuo, Cationic S-doped TiO2/SiO2 visible-light photocatalyst synthesized by co-hydrolysis method and its application for organic degradation, 273, (2019) 50-57. https://doi.org/10.1016/j.molliq.2018.10.021

A. Pourzad, H. R. Sobhi, M. Behbahani, A. Esrafili, R. R. Kalantary, and M. J. J. o. M. L. Kermani, Efficient visible light-induced photocatalytic removal of paraquat using N-doped TiO2@ SiO2@ Fe3O4 nanocomposite, 299, (2020) 112167. https://doi.org/10.1016/j.molliq.2019.112167

E. Mrotek, S. Dudziak, I. Malinowska, D. Pelczarski, Z. Ryżyńska, and A. J. S. o. T. T. E. Zielińska-Jurek, Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst, (2020) 138167. https://doi.org/10.1016/j.scitotenv.2020.138167

C. A. Staples, P. B. Dome, G. M. Klecka, S. T. Oblock, and L. R. J. C. Harris, A review of the environmental fate, effects, and exposures of bisphenol A, 36, 10, (1998) 2149-2173. https://doi.org/10.1016/S0045-6535(97)10133-3

A. V. Krishnan, P. Stathis, S. F. Permuth, L. Tokes, and D. J. E. Feldman, Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving, 132, 6, (1993) 2279-2286. https://doi.org/10.1210/endo.132.6.8504731

L.-C. Wang, X.-j. Ni, Y.-H. Cao, and G.-q. J. A. S. S. Cao, Adsorption behavior of bisphenol A on CTAB-modified graphite, 428, 165-170, 2018. https://doi.org/10.1016/j.apsusc.2017.07.093

H. Wang et al., Preparing a photocatalytic Fe doped TiO2/rGO for enhanced bisphenol A and its analogues degradation in water sample, 505, p. (2020) 144640. https://doi.org/10.1016/j.apsusc.2019.144640

X. He et al., Assessment of nitrogen–fluorine-codoped TiO2 under visible light for degradation of BPA: Implication for field remediation, 314, (2016) 81-92. https://doi.org/10.1016/j.jphotochem.2015.08.014

S. Sambaza, A. Maity, and K. J. J. o. E. C. E. Pillay, Enhanced degradation of BPA in water by PANI supported Ag/TiO2 nanocomposite under UV and visible light, 7, 1, (2019) 102880. https://doi.org/10.1016/j.jece.2019.102880

X. Hao, M. Li, L. Zhang, K. Wang, C. J. J. o. i. Liu, and e. chemistry, Photocatalyst TiO2/WO3/GO nano-composite with high efficient photocatalytic performance for BPA degradation under visible light and solar light illumination, 55, (2017) 140-148,. https://doi.org/10.1016/j.jiec.2017.06.038

C. Y. Kuo, Y. H. Yang, H. M. Hsiao, and S. C. Liao, Photodegradation of Bisphenol A (BPA) by carbon doped TiO2 under sunlight irradiation, in Applied Mechanics and Materials, , 378, (2013) 121-124. https://doi.org/10.4028/www.scientific.net/AMM.378.121

A. M. Cardenas-Peña, J. G. Ibanez, and R. J. I. J. E. S. Vasquez-Medrano, Determination of the point of zero charge for electrocoagulation precipitates from an iron anode, 7, 7, (2012) 6142-6153. http://ri.ibero.mx/handle/ibero/2105

H.-H. Huang, D.-H. Tseng, and L.-C. J. J. o. H. M. Juang, Heterogeneous photocatalytic degradation of monochlorobenzene in water, 156, 1-3, (2008) 186-193. ttps://doi.org/10.1016/j.jhazmat.2007.12.013

C. Shifu, C. J. S. Gengyu, and C. Technology, The effect of different preparation conditions on the photocatalytic activity of TiO2· SiO2/beads, 200, 11, (2006) 3637-3643. https://doi.org/10.1016/j.surfcoat.2004.11.025

P. Klankaw, C. Chawengkijwanich, N. Grisdanurak, S. J. S. Chiarakorn, and Microstructures, The hybrid photocatalyst of TiO2–SiO2 thin film prepared from rice husk silica, 51, 3, (2012) 343-352. https://doi.org/10.1016/j.spmi.2011.12.004

I. Levchuk, M. Sillanpää, C. Guillard, D. Gregori, D. Chateau, and S. J. A. S. S. Parola, TiO2/SiO2 porous composite thin films: Role of TiO2 areal loading and modification with gold nanospheres on the photocatalytic activity, 383, (2016) 367-374. https://doi.org/10.1016/j.apsusc.2016.04.008

L. Yanyan, T. A. Kurniawan, Z. Ying, A. B. Albadarin, and G. J. J. o. M. L. Walker, Enhanced photocatalytic degradation of acetaminophen from wastewater using WO3/TiO2/SiO2 composite under UV–VIS irradiation, 243, (2017) 761-770,. https://doi.org/10.1016/j.molliq.2017.08.092

S. Yaparatne, C. P. Tripp, and A. J. J. o. h. m. Amirbahman, Photodegradation of taste and odor compounds in water in the presence of immobilized TiO2-SiO2 photocatalysts, 346, (2018) 208-217. https://doi.org/10.1016/j.jhazmat.2017.12.029

A. Aizat et al., Photocatalytic degradation of phenol by LaFeO3 nanocrystalline synthesized by gel combustion method via citric acid route, 1, 1, (2019) 91. https://doi.org/10.1007/s42452-018-0104-x

N. Jallouli, K. Elghniji, H. Trabelsi, and M. J. A. j. o. C. Ksibi, Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation, 10, (2017) S3640-S3645,. https://doi.org/10.1016/j.arabjc.2014.03.014

M. F. Atitar, R. Dillert, and D. W. J. T. J. o. P. C. C. Bahnemann, Surface interactions between Imazapyr and the TiO2 surface: An in situ ATR-FTIR study, 121, 8, (2017) 4293-4303. https://doi.org/10.1021/acs.jpcc.6b11673

A. Abdelhaleem and W. J. J. o. h. m. Chu, Photodegradation of 4-chlorophenoxyacetic acid under visible LED activated N-doped TiO2 and the mechanism of stepwise rate increment of the reused catalyst, 338, (2017) 491-501. https://doi.org/10.1016/j.jhazmat.2017.05.056

M. Blanco-Vega et al., Photocatalytic elimination of bisphenol A under visible light using Ni-doped TiO2 synthesized by microwave assisted sol-gel method, 71, (2017) 275-282,. https://doi.org/10.1016/j.mssp.2017.08.013

M. Khatamian and Z. J. D. Alaji, Efficient adsorption-photodegradation of 4-nitrophenol in aqueous solution by using ZnO/HZSM-5 nanocomposites, 286, (2012) 248-253,. https://doi.org/10.1016/j.desal.2011.11.031




DOI: https://doi.org/10.51316/jca.2020.069

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA