Enhanced photocatalytic degradation performance of bisphenol A over TiO2-SiO2 photocatalyst by improving specific surface area under simulation natural light
Abstract
Keywords
Full Text:
PDFReferences
M. C. Ortega-Liebana et al., Extraordinary sensitizing effect of co-doped carbon nanodots derived from mate herb: Application to enhanced photocatalytic degradation of chlorinated wastewater compounds under visible light, 218, (2017) 68-79. https://doi.org/10.1016/j.apcatb.2017.06.021
Y. He, N. B. Sutton, H. H. Rijnaarts, and A. A. J. A. C. B. E. Langenhoff, Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation, 182, (2016) 132-141,. https://doi.org/10.1016/j.apcatb.2015.09.015
S. Chakraborty et al., Photocatalytic hollow fiber membranes for the degradation of pharmaceutical compounds in wastewater, 5, 5, (2017) 5014-5024,. https://doi.org/10.1016/j.jece.2017.09.038
Z. Wu, X. Yuan, J. Zhang, H. Wang, L. Jiang, and G. J. C. Zeng, Photocatalytic decontamination of wastewater containing organic dyes by metal–organic frameworks and their derivatives, 9, 1, (2017) 41-64,. https://doi.org/10.1002/cctc.201600808
S. Xu, Y. Lv, X. Zeng, and D. J. C. E. J. Cao, ZIF-derived nitrogen-doped porous carbons as highly efficient adsorbents for removal of organic compounds from wastewater, 323, (2017) 502-511. https://doi.org/10.1016/j.cej.2017.04.093
N. Mukwevho et al., Removal of naphthalene from simulated wastewater through adsorption-photodegradation by ZnO/Ag/GO nanocomposite, 81, (2020) 393-404. https://doi.org/10.1016/j.jiec.2019.09.030
P. Li et al., Ternary semiconductor metal oxide blends grafted Ag@ AgCl hybrid as dimensionally stable anode active layer for photoelectrochemical oxidation of organic compounds: Design strategies and photoelectric synergistic mechanism, 362, (2019) 336-347. https://doi.org/10.1016/j.jhazmat.2018.09.041
K. Okada, N. Yamamoto, Y. Kameshima, A. Yasumori, and K. J. J. J. o. t. A. C. S. MacKenzie, Effect of silica additive on the anatase‐to‐rutile phase transition, 84, 7, (2001) 1591-1596,. https://doi.org/10.1111/j.1151-2916.2001.tb00882.x
V. Ramamoorthy, K. Kannan, A. I. Joice Joseph, T. Kanagaraj, S. J. J. o. N. Thiripuranthagan, and Nanotechnology, Photocatalytic degradation of acid orange dye using silver impregnated TiO2/SiO2 composite catalysts, 16, 9, (2016) 9980-9986. https://doi.org/10.1166/jnn.2016.12071
V. G. Parale, T. Kim, K.-Y. Lee, V. D. Phadtare, R. P. Dhavale, and H.-H. J. C. I. Park, Hydrophobic TiO2–SiO2 composite aerogels synthesized via in situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity, 46, 4, (2020) 4939-4946. https://doi.org/10.1016/j.ceramint.2019.10.231
F. Li, B. Cao, R. Ma, J. Liang, H. Song, and H. J. T. C. J. o. C. E. Song, Performance of Cu/TiO2‐SiO2 catalysts in hydrogenation of furfural to furfuryl alcohol, 94, 7, (2016) 1368-1374. https://doi.org/10.1002/cjce.22503
X. Chen, H. Sun, J. Zhang, Y. Guo, and D.-H. J. J. o. M. L. Kuo, Cationic S-doped TiO2/SiO2 visible-light photocatalyst synthesized by co-hydrolysis method and its application for organic degradation, 273, (2019) 50-57. https://doi.org/10.1016/j.molliq.2018.10.021
A. Pourzad, H. R. Sobhi, M. Behbahani, A. Esrafili, R. R. Kalantary, and M. J. J. o. M. L. Kermani, Efficient visible light-induced photocatalytic removal of paraquat using N-doped TiO2@ SiO2@ Fe3O4 nanocomposite, 299, (2020) 112167. https://doi.org/10.1016/j.molliq.2019.112167
E. Mrotek, S. Dudziak, I. Malinowska, D. Pelczarski, Z. Ryżyńska, and A. J. S. o. T. T. E. Zielińska-Jurek, Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst, (2020) 138167. https://doi.org/10.1016/j.scitotenv.2020.138167
C. A. Staples, P. B. Dome, G. M. Klecka, S. T. Oblock, and L. R. J. C. Harris, A review of the environmental fate, effects, and exposures of bisphenol A, 36, 10, (1998) 2149-2173. https://doi.org/10.1016/S0045-6535(97)10133-3
A. V. Krishnan, P. Stathis, S. F. Permuth, L. Tokes, and D. J. E. Feldman, Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving, 132, 6, (1993) 2279-2286. https://doi.org/10.1210/endo.132.6.8504731
L.-C. Wang, X.-j. Ni, Y.-H. Cao, and G.-q. J. A. S. S. Cao, Adsorption behavior of bisphenol A on CTAB-modified graphite, 428, 165-170, 2018. https://doi.org/10.1016/j.apsusc.2017.07.093
H. Wang et al., Preparing a photocatalytic Fe doped TiO2/rGO for enhanced bisphenol A and its analogues degradation in water sample, 505, p. (2020) 144640. https://doi.org/10.1016/j.apsusc.2019.144640
X. He et al., Assessment of nitrogen–fluorine-codoped TiO2 under visible light for degradation of BPA: Implication for field remediation, 314, (2016) 81-92. https://doi.org/10.1016/j.jphotochem.2015.08.014
S. Sambaza, A. Maity, and K. J. J. o. E. C. E. Pillay, Enhanced degradation of BPA in water by PANI supported Ag/TiO2 nanocomposite under UV and visible light, 7, 1, (2019) 102880. https://doi.org/10.1016/j.jece.2019.102880
X. Hao, M. Li, L. Zhang, K. Wang, C. J. J. o. i. Liu, and e. chemistry, Photocatalyst TiO2/WO3/GO nano-composite with high efficient photocatalytic performance for BPA degradation under visible light and solar light illumination, 55, (2017) 140-148,. https://doi.org/10.1016/j.jiec.2017.06.038
C. Y. Kuo, Y. H. Yang, H. M. Hsiao, and S. C. Liao, Photodegradation of Bisphenol A (BPA) by carbon doped TiO2 under sunlight irradiation, in Applied Mechanics and Materials, , 378, (2013) 121-124. https://doi.org/10.4028/www.scientific.net/AMM.378.121
A. M. Cardenas-Peña, J. G. Ibanez, and R. J. I. J. E. S. Vasquez-Medrano, Determination of the point of zero charge for electrocoagulation precipitates from an iron anode, 7, 7, (2012) 6142-6153. http://ri.ibero.mx/handle/ibero/2105
H.-H. Huang, D.-H. Tseng, and L.-C. J. J. o. H. M. Juang, Heterogeneous photocatalytic degradation of monochlorobenzene in water, 156, 1-3, (2008) 186-193. ttps://doi.org/10.1016/j.jhazmat.2007.12.013
C. Shifu, C. J. S. Gengyu, and C. Technology, The effect of different preparation conditions on the photocatalytic activity of TiO2· SiO2/beads, 200, 11, (2006) 3637-3643. https://doi.org/10.1016/j.surfcoat.2004.11.025
P. Klankaw, C. Chawengkijwanich, N. Grisdanurak, S. J. S. Chiarakorn, and Microstructures, The hybrid photocatalyst of TiO2–SiO2 thin film prepared from rice husk silica, 51, 3, (2012) 343-352. https://doi.org/10.1016/j.spmi.2011.12.004
I. Levchuk, M. Sillanpää, C. Guillard, D. Gregori, D. Chateau, and S. J. A. S. S. Parola, TiO2/SiO2 porous composite thin films: Role of TiO2 areal loading and modification with gold nanospheres on the photocatalytic activity, 383, (2016) 367-374. https://doi.org/10.1016/j.apsusc.2016.04.008
L. Yanyan, T. A. Kurniawan, Z. Ying, A. B. Albadarin, and G. J. J. o. M. L. Walker, Enhanced photocatalytic degradation of acetaminophen from wastewater using WO3/TiO2/SiO2 composite under UV–VIS irradiation, 243, (2017) 761-770,. https://doi.org/10.1016/j.molliq.2017.08.092
S. Yaparatne, C. P. Tripp, and A. J. J. o. h. m. Amirbahman, Photodegradation of taste and odor compounds in water in the presence of immobilized TiO2-SiO2 photocatalysts, 346, (2018) 208-217. https://doi.org/10.1016/j.jhazmat.2017.12.029
A. Aizat et al., Photocatalytic degradation of phenol by LaFeO3 nanocrystalline synthesized by gel combustion method via citric acid route, 1, 1, (2019) 91. https://doi.org/10.1007/s42452-018-0104-x
N. Jallouli, K. Elghniji, H. Trabelsi, and M. J. A. j. o. C. Ksibi, Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation, 10, (2017) S3640-S3645,. https://doi.org/10.1016/j.arabjc.2014.03.014
M. F. Atitar, R. Dillert, and D. W. J. T. J. o. P. C. C. Bahnemann, Surface interactions between Imazapyr and the TiO2 surface: An in situ ATR-FTIR study, 121, 8, (2017) 4293-4303. https://doi.org/10.1021/acs.jpcc.6b11673
A. Abdelhaleem and W. J. J. o. h. m. Chu, Photodegradation of 4-chlorophenoxyacetic acid under visible LED activated N-doped TiO2 and the mechanism of stepwise rate increment of the reused catalyst, 338, (2017) 491-501. https://doi.org/10.1016/j.jhazmat.2017.05.056
M. Blanco-Vega et al., Photocatalytic elimination of bisphenol A under visible light using Ni-doped TiO2 synthesized by microwave assisted sol-gel method, 71, (2017) 275-282,. https://doi.org/10.1016/j.mssp.2017.08.013
M. Khatamian and Z. J. D. Alaji, Efficient adsorption-photodegradation of 4-nitrophenol in aqueous solution by using ZnO/HZSM-5 nanocomposites, 286, (2012) 248-253,. https://doi.org/10.1016/j.desal.2011.11.031
DOI: https://doi.org/10.51316/jca.2020.069
Refbacks
- There are currently no refbacks.
*******
Index: Google Scholar; Crossref
---------
Vietnam Journal of Catalysis and Adsorption
Address: Room 302 | C4-5 | Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.
Tel.: +84. 967.117.098 (Dr. Phượng) | Email: editor@jca.edu.vn | FB: JCA.VNACA