Synthesis of Ag-TiO2/perlite composite for the photodegradation of methylene blue under solar light irradiation

Nui Pham Xuan, Hoa Nguyen Thi, Tien Nguyen Trung, Tai Le Huu, Thi Tran Thi Van


In this research, photocatalytic materials of TiO2, Ag-TiO2, Ag-TiO2/perlite were synthesized by the sol-gel method. By combining the photocatalytic activity between Ag-TiO2 and Perlite mineral, the Ag-TiO2/perlite composite has overcome the disadvantages of pristine TiO2, such as high band gap energy, low light utilization and easy recombination of electrons and holes. The synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption isotherm, UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity of the samples was tested for degradation of methylene blue (MB) under solar light irradiation. Photodegradation studies revealed a 95% removal of MB dye via the synthesized Ag-TiO2/perlite after 150 min of irradiation. Reusability of this hybrid photocatalyst system was tested and only a 3% decrease was observed after four cycles.


Photocatalyst, Ag-TiO2; Ag-TiO2/perlite; Perlite; Methylene blue (MB)

Full Text:



H. Guan, X. Wang, Y. Guo, C. Shao, X. Zhang, Y. Liu, R.-F. Louh, “Controlled synthesis of Ag-coated TiO2 nanofibers and their enhanced effect in photocatalytic applications,” Appl. Surf. Sci., 2013, doi: 10.1016/j.apsusc.2013.05.050.

S. A. Amin, M. Pazouki, and A. Hosseinnia, “Synthesis of TiO2-Ag nanocomposite with sol-gel method and investigation of its antibacterial activity against E. coli,” Powder Technol., 2009, doi: 10.1016/j.powtec.2009.07.021.

L. Xiuhua, X. Yunshu, Z. Zhong, F. Yibei, and D. Yi, “Preparation of Zn/TiO2 powder and its photocatalytic performance for oxidation of P-nitrophenol,” Nucl. Sci. Tech., vol. 18, no. 1, pp. 59–64, 2007.

D. I. Anwar and D. Mulyadi, “Synthesis of Fe-TiO2 Composite as a Photocatalyst for Degradation of Methylene Blue,” Procedia Chem., 2015, doi: 10.1016/j.proche.2015.12.131.

J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, L. Zhang, “Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+,” Appl. Catal. B Environ., 2006, doi: 10.1016/j.apcatb.2005.08.013.

X. Tan, M. Fang, J. Li, Y. Lu, and X. Wang, “Adsorption of Eu(III) onto TiO2: Effect of pH, concentration, ionic strength and soil fulvic acid,” J. Hazard. Mater., 2009, doi: 10.1016/j.jhazmat.2009.02.051.

I. Ganesh et al., “Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications,” Sci. World J., 2012, doi: 10.1100/2012/127326.

C. D. Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M. C. Paganini, E. Giamello, “N-doped TiO2: Theory and experiment,” Chem. Phys., 2007, doi: 10.1016/j.chemphys.2007.07.020.

X. Chen and C. Burda, “The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials,” J. Am. Chem. Soc., 2008, doi: 10.1021/ja711023z.

J. C. Yu, J. Yu, W. Ho, Z. Jiang, and L. Zhang, “Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders,” Chem. Mater., 2002, doi: 10.1021/cm020027c.

H. Yun, J. Li, H. B. Chen, and C. J. Lin, “A study on the N-, S- and Cl-modified nano-TiO2 coatings for corrosion protection of stainless steel,” Electrochim. Acta, 2007, doi: 10.1016/j.electacta.2007.04.078.

G. Sanzone et al., “Ag/TiO2 nanocomposite for visible light-driven photocatalysis,” Superlattices Microstruct., vol. 123, pp. 394–402, 2018.

P. Wang et al., “One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity,” Appl. Catal. B Environ., 2013, doi: 10.1016/j.apcatb.2012.12.009.

A. Sari, M. Tuzen, D. Citak, and M. Soylak, “Adsorption characteristics of Cu(II) and Pb(II) onto expanded Perlite from aqueous solution,” J. Hazard. Mater., 2007, doi: 10.1016/j.jhazmat.2007.02.052.

Y. Shavisi, S. Sharifnia, S. N. Hosseini, and M. A. Khadivi, “Application of TiO2/Perlite photocatalysis for degradation of ammonia in wastewater,” J. Ind. Eng. Chem., vol. 20, no. 1, pp. 278–283, 2014.

M. Giannouri, Th. Kalampaliki, N. Todorova, T. Giannakopoulou, N. Boukos, D. Petrakis, T.

Vaimakis, and C. Trapalis, “One-step synthesis of TiO2/perlite composites by flame spray pyrolysis and their photocatalytic behavior,” Int. J. Photoenergy, vol. 2013, 2013.

P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Zeitschrift für Tech. Phys., 1931, doi: 10.4236/msce.2014.28004.

S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown, and M. A. Hashib, “Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments,” Desalination. 2010, doi: 10.1016/j.desal.2010.04.062.

Z. Chen, L. Fang, W. Dong, F. Zheng, M. Shen and J. Wang, Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity, J. Mater. Chem. A, 2014, 2, 824.



  • There are currently no refbacks.


Index: Google ScholarCrossref


Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email:   FB: JCA.VNACA