A theoretical study on the influence of non-metal (B, C, N, O, F) doping on the electronic and optical properties of graphitic carbon nitride (g-C3N4)

Ha Nguyen Thi Thu, Ha Nguyen Ngoc

Abstract


A robust and accurate tight-binding quantum chemical method (GFN2-xTB) was performed to study the electronic and optical properties of graphitic carbon nitride (g-C3N4) and g-C3N4 modified with non-metal atom (B, C, N, O, F). The vertical ionization potential, electron affinity and global electrophilicity indexes were calculated and analyzed. The obtained results show that the doping of B, C, N, O or F atom onto the surface g-C3N4 is favorable in terms of formation energy. The introduction of non-metal atoms raises the Lewis acidity of g-C3N4. The calculated UV-VIS spectra show that the doping of non-metal atoms increases the absorption intensity of visible light compared to the pure g-C3N4.


Keywords


g-C3N4; non-metal; electronic structures; optical properties; GFN-xTB

Full Text:

PDF

References


J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391 (2017) 72–123. https://doi.org/10.1016/j.apsusc.2016.07.030

Y. Sun, W. Ha, J. Chen, H. Qi, Y. Shi, TrAC Trends Anal. Chem. 84 (2016) 12–21. https://doi.org/10.1016/j.trac.2016.03.002

S. Cao, J. Jiang, B. Zhu, J. Yu, Phys. Chem. Chem. Phys. 18 (2016) 9457–19463. https://doi.org/10.1039/C6CP02832B

S. Ye, R. Wang, M. Wu, Y. Yuan, Appl. Surf. Sci. 358 (2015) 15–27. https://doi.org/10.1016/j.apsusc.2015.08.173

S. Lam, J. Sin, A.R. Mohamed, Mater. Sci. Semicond. Process. 47 (2016) 62–84. https://doi.org/10.1016/j.mssp.2016.02.019

W. Yu, D. Xu, T. Peng, J. Mater. Chem. A 3 (2015) 19936–19947. https://doi.org/10.1039/C5TA05503B

M. Ismael, Y. Wu, Sustain. Energy Fuels 3(11) (2019) 2907-2925. https://doi.org/10.1039/C9SE00422J

S. Zhang, L. Gao, D. Fan, X. Lv, Y. Li, Z. Yan, Chem. Phys. Lett. 672 (2017), 26-30. https://doi.org/10.1016/j.cplett.2017.01.046

P. Xiao, D. Jiang, T. Liu, D. Li, M. Chen, Mater. Lett. 212 (2018) 111-113. https://doi.org/10.1016/j.matlet.2017.10.079

Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, Carbon 99 (2016) 111-117. https://doi.org/10.1016/j.carbon.2015.12.008

S. Samanta, R. Yadav, A. Kumar, A. Kumar Sinha, R. Srivastava, Appl. Catal. B Environ. 259 (2019) 118054. https://doi.org/10.1016/j.apcatb.2019.118054

S. Tang, Z. Fu, Y. Li, Y. Li, Appl. Catal. A Gen. 590 (2020), 117342. https://doi.org/10.1016/j.apcata.2019.117342

X. Ma, Y. Lv, J. Xu, Y. Liu, R. Zhang, Y. Zhu, J. Phys. Chem. C 116 (2012) 23485–23493. https://doi.org/10.1021/jp308334x

S. Lin, X. Ye, X. Gao, J. Huang, J. Mol. Catal. A: Chem. 406 (2015) 137–144. https://doi.org/10.1016/j.molcata.2015.05.018

B. Zhu, J. Zhang, C. Jiang, B. Cheng, J. Yu, Appl. Catal. B Environ. 207 (2017) 27-34. https://doi.org/10.1016/j.apcatb.2017.02.020

S. Lu, C. Li, H.H. Li, Y.F. Zhao, Y.Y. Gong, L.Y. Niu, X.J. Liu, T. Wang, Appl. Surf. Sci. 392 (2017) 966–974. https://doi.org/10.1016/j.apsusc.2016.09.136

H. Wu, L. Liu, S. Zhao, Appl. Surf. Sci. 358 (2015) 363–369. https://doi.org/10.1016/j.apsusc.2015.06.187

H. Pan, H. Zhang, H. Liu, Solid State Commun. 203 (2015) 35‐40. https://doi.org/10.1016/j.ssc.2014.11.017

L. Zhang, Z. Jin, H. Lu, T. Lin, S. Ruan, X. Song Zhao, Y. Zeng, ACS Omega 2018 3 (11), 15009-15017.https://doi.org/10.1021/acsomega.8b01933

S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput. 13 (2017) 1989-2009. https://doi.org/10.1021/acs.jctc.7b00118

C. Bannwarth, S. Ehlert, S. Grimme, J Chem Theory Comput., 15 (2019) 1652-1671. https://doi.org/10.1021/acs.jctc.8b01176

Pracht P, Caldeweyher E, Ehlert S, et al. ChemRxiv, 2019, preprint. DOI: 10.26434/chemrxiv.8326202.v1

S. Grimme, A. Hansen, Angew. Chem. Int. Ed. 54 (2015) 12308-12313. https://doi.org/10.1002/anie.201501887

C.A. Bauer, A. Hansen, S. Grimme, Chem. Eur. J. 23 (2017) 6150-6164. https://doi.org/10.1002/chem.201604682

C. Bannwarth, S. Grimme, Comput Theor Chem. 1040-1041 (2014) 45-53. https://doi.org/10.1016/j.comptc.2014.02.023

D.T. Vodak, K. Kim, L. Iordanidis, P.G. Rasmussen, A.J. Matzger, O.M. Yaghi, Chem. Eur. J. 9 (2003) 4197-4201. https://doi.org/10.1002/chem.200304829

J. Wang, Z. Guan, J. Huang, Q. Li, J. Yang, J. Mater. Chem. A 2 (2014) 7960‐7966. https://doi.org/10.1039/C4TA00275J

Y. Xu, S.P. Gao, Int. J. Hydrog. Energy 37(15) (2012) 11072-11080. https://doi.org/10.1016/j.ijhydene.2012.04.138

K.K. Akurati, A. Vital, J.P. Dellemann, K. Michalow, T. Graule, D. Ferri, A. Baiker, Appl. Catal. B-Environ. 79 (2008) 53-62. https://doi.org/10.1016/j.apcatb.2007.09.036

F. Wei, Y. Liu, H. Zhao, X. Ren, J. Liu, T. Hasan, L. Chen, Y. Li, B. Su, Nanoscale, 10 (2018) 4515-4522. https://doi.org/10.1039/C7NR09660G




DOI: https://doi.org/10.51316/jca.2020.052

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA