Multiwalled carbon nanotubes synthesis from methane using a stainless steel foils as a catalyst

Thuan Huynh Minh, Sura Nguyen, Ngan Nguyen Thi Kim, Huan Nguyen Manh, Uy Do Pham Noa, Hang Nguyen Anh Thu, Danh Nguyen Cong, Luong Nguyen Huu, Tien Nguyen Cat

Abstract


In this study, a thin stainless-steel foil was used as a catalyst for carbon nanotubes (CNTs) using methane as a carbon source via the chemical vapor deposition (CVD) method. Our results revealed that pre-treatment step of the catalyst plays an important role in CNT formation. In our experiments, a catalyst pre-treatment temperature of 850 oC have been found to facilitate the surface roughness and provide more active nucleation sites for CNTs formation. Multiwalled CNTs with 6 layers, their diameters of 10 – 20 nm and their length of app. 300 nm were grown. This finding might lead to a process for improving the quality of MWCNTs grown on steel foil as catalyst.

Keywords


CNTs; Stainless-steel foil; Pretreatment; Methane; CVD

Full Text:

PDF

References


Jeon, H., J. Park, M. Shon, Journal of Industrial and Engineering Chemistry, 19 (2013), 849-853, https://doi.org/10.1016/j.jiec.2012.10.030

Y. Chen, X. Li, K. Park, J. Song, J. Hong, L. Zhou, Y.Ư. Mai, H. Huang, J.B. Goodenough J. Am. Chem. Soc. , 135 (2013) 16280-16283. https://doi.org/10.1021/ja408421n

U.S. Graphene Market size, by End-user, 2013 – 2024

J.A. Isaacs, A. Tanwani, M.L. Healy, L.J. Dahlben, Journal of Nanoparticle Research, 12 (2010), 551-562, https://doi.org/10.1007/s11051-009-9673-3

Barbara Pieters, JEC Magazine, 34 (2007), 1-7, http://www.jeccomposites.com/knowledge/international-composites-news/nanocomposites-automotive-research-activities-and-business.

A.F. Murphy, S. Kataria, B.A. Patel, Journal of Solid State Electrochemistry, 20 (2016), 785-792. https://doi.org/10.1007/s10008-015-3111-5

J.L. Killian, N.B. Zuckerman, D.L. Niemann, B.P. Ribaya, M. Rahman, R. Espinosa, M. Meyyappan, C.V. Nguyen, Journal of Applied Physics 103 (2008) 064312. https://doi.org/10.1063/1.2870931

W. Qian , T. Liu, Z. Wang, H. Yu, Z. Li, F. Wei, G. Lu, Carbon 41 (2003) 2487–2493. https://doi.org/10.1016/S0008-6223(03)00324-5

I.T. Han, B.K. Kim, H.J. Kim, M. Yang, Y. W. Jin, S. Jung, N. Lee, S. K. Kim, J. M. Kim, Chemical Physics Letters 400 (2004) 139–144. 10.1016/j.cplett.2004.10.123

A. Yahyazadeh, B. Khoshandam, Results in Physics 7 (2017), 3826-3837, https://doi.org/10.1016/j.rinp.2017.10.001.

X. Lepro, M. Lima, R.H. Baughman, Carbon 48 (2010), 3621-3627, https://doi.org/10.1016/j.carbon.2010.06.016

N.V. Chuc, N.D. Dung, P.N. Hong, L.D. Quang, P. H. Khoi, P.N. Minh, J. Korean Phy. Soc., 52 (2008) 1368-1371. https://doi.org/10.3938/jkps.52.1368

S. Talapatra, S. Kar, S. K. Pal, R. Vajtai, L. Ci, P. Victor, M. M. Shaijumon, S. Kaur, O. Nalamasu, P. M. Ajayan, Nature nanotechnology, 1 (2006), 112-116, https://doi.org/10.1038/nnano.2006.56.

L. Yuan, K Saito, C. Pan, F.A. William, A.S. Gordon, Chemical physics letters, 340 (2001), 237-241. 10.1016/S0009-2614(01)00435-3

R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Advances in Physics, 60 (2011), 413-550. https://doi.org/10.1080/00018732.2011.582251

D.Y. Usachov, V.Y. Davydov, V.S. Levitskii, V.O. Shevelev, D. Marchenko, B.V. Senkovskiy, O.Y. Vilkov, A.G. Rybkin, L.V. Yashina, E.V. Chulkov, I. Y. Sklyadneva, R. Heid, K.P. Bohnen, C. Laubschat, D.V. Vyalikh, ACS Nano, 11 (2017), 6336-6345, https://doi.org/10.1021/acsnano.7b02686




DOI: https://doi.org/10.51316/jca.2020.045

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA