Studying effect of temperature on to formation and red congo absorption ability of cupper oxide

Lan Nguyen Thi, Mai Nguyen Thi Tuyet, Thang Pham Van, Chinh Huynh Dang, Dung Ta Ngoc, Anh Luu Thi Lan

Abstract


Cuprous oxide nanoparticles (Cu2O) were prepared by a one-step reduction method at 65, 70 and 85oC temperature. The Cu2O nanoparticles were characterized by XRD, Raman, SEM and EDS techniques, respectively. The adsorption removal of red congo dye from aqueous solution by the as-prepared Cu2O nanoparticles was studied. Kinetics and isotherms studies suggested that the adsorption process followed pseudo-second-order and Freundlich models. The maximum adsorption capacity was estimated to be 82,6 mg/g, which was the highest reported value so far for red congo  adsorption.

Keywords


Cu2O; hydrazine; absorption; congo red

Full Text:

PDF

References


Zhang YH, Jiu BB, Gong FL, Chen JL, Zhang HL., J Alloys Compd. 729 (2017) 563-570. http://doi.org/10.1016/j.jallcom.2017.09.237

Martínez-Ruiz A, Alonso-Nuñez G., Mater Res Bull. 43(6) (2008) 1492-1496. http://doi.org/10.1016/j.materresbull.2007.06.026

Hou TF, et al., Int J Hydrogen Energy 44(35) (2019) 19177-19192. http://doi.org/10.1016/j.ijhydene.2018.05.105

Hussain S, et al., Optik (Stuttg). 172 (2018) 72-78. http://doi.org/10.1016/j.ijleo.2018.07.026

Balık M, Bulut V, Erdogan IY., Int J Hydrogen Energy 44(34) (2019) 18744-18755. http://doi.org/10.1016/j.ijhydene.2018.08.159

Lee YJ, Kim S, Park SH, Park H, Huh YD., Mater Lett. 65(5) (2011) 818-820. http://doi.org/10.1016/j.matlet.2010.12.023

Li T, He M, Zeng W., J Alloys Compd 712 (2017) 50-58. http://doi.org/10.1016/j.jallcom.2017.04.057

Guo Q, Li Y, Zeng W., Phys E Low-Dimensional Syst Nanostructures 114 (2019). http://doi.org/10.1016/j.physe.2019.113564

Chen J, Perng D, Fang J., Sol Energy Mater Sol Cells. 95(8) (2011) 2471-2477. http://doi.org/10.1016/j.solmat.2011.04.034

Malerba C, et al., Sol Energy Mater Sol Cells. 95(10) (2011) 2848-2854. http://doi.org/10.1016/j.solmat.2011.05.047

Akerdi AG, Bahrami SH., Journal of Environmental Chemical Engineering 7(2019).

Singh J, Rawat M., J Bioelectron Nanotechnol 1 (1) (2016). http://doi.org/10.13188/2475-224x.1000003

Kumar M, Das RR, Samal M, Yun K., Mater Chem Phys. 218 (2018) 272-278. http://doi.org/10.1016/j.matchemphys.2018.07.048

Ghouri MI, Ahmed E., Ceram Int. 45(17) (2019 23196-23202. http://doi.org/10.1016/j.ceramint.2019.08.015

Kumar S, et al., Appl Catal B Environ. 189 (2016) 226-232. http://doi.org/10.1016/j.apcatb.2016.02.038

Kumar M, Das RR, Samal M, Yun K., Mater Chem Phys. 218 (2018) 272-278. http://doi.org/10.1016/j.matchemphys.2018.07.048

Xue R, Fan X, Liu Y, Li P, Liu Q, Liu F., Chem Phys Lett. 730 (2019) 45-53. http://doi.org/10.1016/j.cplett.2019.05.036

Qin H, et al., Mater Chem Phys 232 (2019) 240-245. http://doi.org/10.1016/j.matchemphys.2019.04.081

Tang H, Liu X, Xiao M, Huang Z, Tan X., J Environ Chem Eng 5(5) (2017) 4447-4453. http://doi.org/10.1016/j.jece.2017.08.034

Aguilar MS, Rosas G., Environ Nanotechnology, Monit Manag 11 (2019). http://doi.org/10.1016/j.enmm.2018.100195

Do DD. Adsorption Analysis: Equilibria and Kinetics. 2 (1998). http://doi.org/10.1142/p111

Dhritiman Gupta, S. R. Meher, Navas Illyaskutty, Zachariah C. Alex, Journal of Alloys and Compounds 743 (2018) 737-745. https://doi.org/10.1016/j.jallcom.2018.01.181

Mao SF, Ding ZJ., J.Phys. Condens. Matter 24 (2012) 1-9. http://doi.org/10.1088/0953-8984/24/17/175002

Liu X, et al., Appl Surf Sci. 405 (2017) 359-371. http://doi.org/10.1016/j.apsusc.2017.02.025




DOI: https://doi.org/10.51316/jca.2020.031

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA