Effect of adsorption on photocatalytic activity for rhodamine B degradation of copper-doped tungsten disulfide

Minh Nguyen Cong, Thanh Nguyen Pham Chi, Duyen Nguyen Thi My, Phuc Nguyen Van, Huong Truong Duy, Vien Vo

Abstract


In this study, the Cu-doped WS2 materials were synthesized by a simple solid-state calcination of mixture of tungstic acid, thiourea and copper (II) acetate monohydrate in Ar gas at 650 oC for 1h, and denoted as xCu-WS2, where x is atomic percentage ratios of Cu/W (x= 1, 3, 5%) and weigh ratio of tungstic acid/thiourea is constant (1:5). The obtained products were characterized by X-ray diffraction, infrared, energy-dispersive X-ray spectroscopy, scan electron microscopy and UV-Vis diffuse reflectance spectroscopy. The photocatalytic performance of the samples was assessed through photodegradation of rhodamine B (RhB). Interestingly, there is a synergistic relationship between adsorption and photocatalysis, in which, a higher relative adsorption might give a better photocatalytic results due to reactive species reacting with absorbed organic matter on the catalyst surface rather than in the bulk of solution. The photodegradation of RhB over the 1Cu-WS2 catalyst was enhanced significantly with the highest efficiency up to 95.35% at pH 8 for 6 hours of visible light irradiation, which is attributed to the high adsorption of RhB cationic dye on the material surface. The photocatalytic mechanism was discussed as well.

Keywords


Copper-doped WS2; WS2 rhodamin B; adsorption; photocatalytic; WS2 pha tạp Cu; hấp phụ; quang xúc tác

Full Text:

PDF

References


M. D. Karkas, O. Verho, E. V. Johnston, B. Akermark, Chem. Rev., 114, 24, (2014) 11863-12001. https://doi.org/10.1021/cr400572f

H. Zhang,

ACS Nano, 9, (2015) 9451-9469. https://doi.org/10.1021/acsnano.5b05040

X. Peng, L. Peng, C. Wu, Y. Xie, Chem. Soc. Rev., 43, (2014) 3303-3323. https://doi.org/10.1039/C3CS60407A

X. Sun, H. Deng, W. Zhu, Z. Yu, C. Wu, Y. Xie, Angew. Chem. Int. Ed., 55, 5, (2016) 1704-1709. https://doi.org/10.1002/anie.201508571

S. V. Vattikuti, C. Byon, V. Chitturi, Superlattices and Microstructures, 2016, 94, (2016) 39-50. https://doi.org/10.1016/j.spmi.2016.03.042

Y. Nosaka, A. Y. Nosaka, Chemical Reviews, 117(17), (2017) 11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161

H. S. Son, S. J. Lee, I. H. Cho, K. D. Zoh, Chemosphere, 57, (2004) 309–317. https://doi.org/10.1016/j.chemosphere.2004.05.008

Ji, J. Zhang, F. Chen, M. Anpo, Appl. Catal. B: Environ., 85, (2009) 148–154. https://doi.org/10.1016/j.apcatb.2008.07.004

C. Martínez, M. L. Canle, M. I. Fernández, J. A. Santaballa, J. Faria, Appl. Catal. B: Environ., 102, (2011) 563–571. https://doi.org/10.1016/j.apcatb.2010.12.039

W. Zou, B. Gao, Y. Ok, L. Dong, Chemosphere, 218, (2019) 845–859. https://doi.org/10.1016/j.chemosphere.2018.11.175

D. Friedmann, C. Mendive, D. Bahnemann, Appl. Catal. B: Environ., 99, (2010) 398–406. https://doi.org/10.1016/j.apcatb.2010.05.014

C. B. Mendive, T. Bredow, A. Feldhoff, M. Blesa, D. Bahnemann, Phys. Chem. Chem. Phys., 10, (2008), 1960–1974. https://doi.org/10.1039/B800140P

T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C, 111, (2007) 5259–5275. https://doi.org/10.1021/jp069005u

Y. Luo, X. Wei, B. Gao, W. Zou, Y. Zheng, Y. Yang, Y. Zhang, Q. Tong, L. Dong, Chemical Engineering Journal, 375 (2019) 122019. https://doi.org/10.1016/j.cej.2019.122019

Y. Yang, Y. Chun, G. Sheng, and M. Huang, Langmuir, 20 (2004) 6736-6741. https://doi.org/10.1021/la049363t

A. Khataee, Eghbali, M. H. Irani-Nezhad, A. Hassani, Ultrasonics Sonochemistry, 48, (2018) 329–339. https://doi.org/10.1016/j.ultsonch.2018.06.003

S. Wang, G. Li, G. Du, L. Li, X. Jiang, C. Feng, Z. Guo, S. Kim, Nanoscale Research Letters, 5(8), (2010) 1301–1306. https://doi.org/10.1007/s11671-010-9642-x

J. Theerthagiri, R. A. Senthil, A. Malathi, A. Selvi, J. Madhavan, M. Ashokkumar, RSC Advances, 5(65), (2015) 52718–52725. https://doi.org/10.1039/C5RA06512G

C. C. Wang, C. K. Lee, M. D. Lyu, L. C. Juang, Dyes Pigment., 76, (2008) 817–824. https://doi.org/10.1016/j.dyepig.2007.02.004

H.-Y. Xu, L.-C. Wu, H. Zhao, L.-G. Jin, S.-Y. Qi, PLoS ONE, 10(11), (2015) e0142616. https://doi.org/10.1371/journal.pone.0142616

Qin, Y. Yang, X. Zhang, J. Niu, H. Yang, S. Tian, J. Zhu, M. Lu, Nanomaterials, 8(1), (2018, 4. https://doi.org/10.3390/nano8010004

R. Jiang, H. Y. Zhu, G. M. Zeng, L. Xiao, Y. J. Guan, J Cent South Univ Technol.; 17, (2010) 1223–1229. https://doi.org/10.1007/s11771-010-0623-0

N. Rioja, Benguria, F. J. Peñas, S. Zorita, Environ Sci Pollut Res., 21, (2014) 11168–11177. https://doi.org/10.1007/s11356-014-2593-5




DOI: https://doi.org/10.51316/jca.2020.027

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA