Catalytic activities for the complete oxidation of toluene over MnO2, Co3O4 and NiO catalysts

Tuan Nguyen Dinh Minh, Nga Phan Thi Hang

Abstract


In this study, the catalytic performances of the complete oxidation of toluene over different transition metal oxides including MnO2, Co3O4 and NiO were investigated. These oxides were synthesized by hydrothermal method, followed by annealing. The catalysts were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen isotherm adsorption-desorption before being evaluated their catalytic activity for the total oxidation of toluene in air. As a result, MnO2 was illustrated as the best catalyst having largest surface area and lowest activation energy, followed by Co3O4 and NiO.

Keywords


MnO2; Co3O4; NiO; VOCs; toluene

Full Text:

PDF

References


. H. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Catal. Sci. Technol. 5 (2015) 2649–2669. https://doi.org/10.1039/C4CY01733A

. J. Li, H. Liu, Y. Deng, G. Liu, Y. Chen, J. Yang, Nanotechnol. Rev. 5 (2016), 147-181. https://doi.org/10.1515/ntrev-2015-0051

. C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, Z. Hao, Chem. Rev. 119 (2019) 4471–4568. https://doi.org/10.1021/acs.chemrev.8b00408

. X. Tang, P.K. Misztal, W.W. Nazaroff, A.H. Goldstein, Environ. Sci. Technol. 50 (2016) 12686–12694. https://doi.org/10.1021/acs.est.6b04415

. E. Cetin, M. Odabasi, R. Seyfioglu, Sci. Total Environ. 312 (2003) 103–112. https://doi.org/10.1016/S0048-9697(03)00197-9

. K. Tzortzatou, E. Grigoropoulou, J. Environ. Sci. Heal. Part A 45 (2010) 534–541. https://doi.org/10.1080/10934521003595027

. J.C. Ge, H.Y. Kim, S.K. Yoon, N.J. Choi, Fuel 218 (2018) 266–274. https://doi.org/10.1016/j.fuel.2018.01.045

. Spengler, J. D., Samet, J. M., & McCarthy, J. F. (2001). Indoor air quality handbook (pp. 9-1). New York: McGraw-Hill.

. Wallace, L. A. (2001). Assessing human exposure to volatile organic compounds. Indoor Air Quality Handbook. McGraw-Hill.

. Y. Chang and J. G. McCarty, Catal. Today, 30 (1996) 163-170. https://doi.org/10.1016/0920-5861(95)00007-0

. V. P. Santos, M. F. R. Pereira, J. J. M. Orfao and J. L. Figueiredo, Appl. Catal., B, 99 (2010) 353-363 https://doi.org/10.1016/j.apcatb.2010.07.007

. B. Bai, H. Arandiyan, J. Li, Appl. Catal. B Environ. 142–143 (2013) 677–683. https://doi.org/10.1016/j.apcatb.2013.05.056

. Y. Li, W. Shen, Chem. Soc. Rev. 43 (2014) 1543–1574. https://doi.org/10.1039/C3CS60296F

. C.Y. Ma, Z. Mu, J.J. Li, Y.G. Jin, J. Cheng, G.Q. Lu, Z.P. Hao, S.Z. Qiao, J. Am. Chem. Soc. 132 (2010) 2608–2613. https://doi.org/10.1021/ja906274t

. Z. Zhang, Z. Jiang, W. Shangguan, Catal. Today 264 (2016) 270–278. https://doi.org/10.1016/j.cattod.2015.10.040

. M.S. Kamal, S.A. Razzak, M.M. Hossain, Atmos. Environ. 140 (2016) 117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031

. M. Dixit, G.N. Subbanna, P.V. Kamath, J. Mater. Chem. 6 (1996) 1429–1432. https://doi.org/10.1039/JM9960601429

. W. He, X. Li, S. An, T. Li, Y. Zhang, J. Cui, Sci. Rep. 9 (2019) 10838. https://doi.org/10.1038/s41598-019-47120-9

. F. Shi, F. Wang, H. Dai, J. Dai, J. Deng, Y. Liu, G. Bai, K. Ji, C.T. Au, Appl. Catal. A Gen. 433–434 (2012) 206–213. https://doi.org/10.1016/j.apcata.2012.05.016

. C.T. Wong, A.Z. Abdullah, S. Bhatia, J. Hazard. Mater. 157 (2008) 480–489. https://doi.org/10.1016/j.jhazmat.2008.01.012

. B. Miranda, E. Díaz, S. Ordóñez, A. Vega, F. V Díez, Chemosphere 66 (2007) 1706–15. https://doi.org/10.1016/j.chemosphere.2006.07.016

. M. Florea, M. Alifanti, V.I. Parvulescu, D. Mihaila-Tarabasanu, L. Diamandescu, M. Feder, C. Negrila, L. Frunza, Catal. Today 141 (2009) 361–366. https://doi.org/10.1016/j.cattod.2008.05.005




DOI: https://doi.org/10.51316/jca.2020.014

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA