Preparation of hydrogel calcium-alginate microparticles via microfluidic device for Cu2+ treatment

Trung Dang Cu, Phuong Le Ha, Hong Hoang Thu, Mai Mac Thi Thu, Vu Tran Khac, Duc Ta Hong, Dung Dang Trung

Abstract


Alginate-based hydrogels are attracted much attention in biomedical and chemical field, and their size and shape are significant to their applications like drug delivery and cell encapsulation. Monodisperse sodium alginate microdroplets are produced using a flow-focusing microfluidic device (MFFD) by adjusting the flow rate on the continuous phase (soybean oil) and the dispersed phase (sodium alginate solution). The external gelation process of sodium alginate microdroplets occurs outside the chanel in a calcium chloride solution to form calcium alginate hydrogel particales. The shape, size and size distribution of these calcium alginate hydrogel particles depend strongly on the flow rate inside the MFFD. By optimizing the parameters, the hydrogel microparticles were obtained with diameters ranging from 70 µm to 100 µm with size distribution under 10%, depending on experimental conditions. The removal of Cu2+ ions by the absorption of hydrogel microparticles was also demonstrated.

Keywords


Calcium-alginate; Microparticle; Microfluidic device; Divalent copper ions

Full Text:

PDF

References


P. Aslani, R.A. Kennedy, J. Microencapsul. 13 (1996) 601–614. https://doi.org/10.3109/02652049609026044

X. Xie, et al., Nano Lett. 17 (2017) 2015–2020. https://doi.org/10.1021/acs.nanolett.7b00026

G.C. Le Goff, R.L. Srinivas, W.A. Hill, P.S. Doyle, Eur. Polym. J. 72 (2015) 386–412. http://dx.doi.org/10.1016/j.eurpolymj.2015.02.022

L. Chen, et al., Int. J. Mol. Sci. 18(5) (2017) 989. https://doi.org/10.3390/ijms18050989

J.A. Rowley, et al., Biomaterials 20 (1999) 45–53. https://doi.org/10.1016/S0142-9612(98)00107-0

Z. Chen, et al., J. Biomater. Sci. Polym. Ed. 29 (2018) 309–324. https://doi.org/10.1080/09205063.2017.1415583

K. Chen, et al., Biomacromolecules 13 (2012) 2748–2759. https://doi.org/10.1021/bm3007242

M. Yamada, M. Seki, J. Chem. Eng. Jpn. 51 (2018) 318–330. https://doi.org/10.1252/jcej.17we328

J.Y. Leong, et al., Particuology 24 (2016) 44–60. http://dx.doi.org/10.1016/j.partic.2015.09.004

Jeon. C., et al., Hydrometallurgy 86(3–4) (2007) 140–146. https://doi.org/10.1016/j.hydromet.2006.11.010

Gotoh.T, et al., Chemosphere 55(1) (2004) 57–64. https://doi.org/10.1016/j.chemosphere.2003.10.034

Chen. J.P, et al., Environ. Sci. Technol. 31(5) (1997) 1433–1439. https://doi.org/10.1021/es9606790

Arı ca. M.Y,Bayramolu. G, Yılmaz. M, Bekta˛. S, Genc. O, J. Hazard. Mater. 109(1–3) (2004) 191–199. https://doi.org/10.1016/j.jhazmat.2004.03.017

Aksu. Z, et al., Proc. Biochem 33(4) (1998) 393–400. https://doi.org/10.1016/S0032-9592(98)00002-8

Abu Al-Rub. F.A, El Naas. M.H, Benyahia. F, Ashour. I, Proc. Biochem. 39(11) (2004) 1767–1773. https://doi.org/10.1016/j.procbio.2003.08.002

O¨ nal. S, et al., J. Hazard. Mater. 146(1–2) (2007) 417–420. https://doi.org/10.1016/j.jhazmat.2007.03.005

Pandey. A, et al., Chem. Spec. Bioavail. 19(1) (2007) 17–24. https://doi.org/10.3184/095422907X198031

Dhakal. R.P, Ghimire. K.N, Inoue. K, Yano. M, Makino. K, Separ. Purific. Technol. 42(3) (2005) 219–225. https://doi.org/10.1016/j.seppur.2004.07.016

Jang. L.K, et al., Biotechnol. Bioeng. 37(3) (1991) 266–273. https://doi.org/10.1002/bit.260370309

Pandey. A.K, Pandey. S.D, Misra. V, Ecotoxicology and Environmental Safety 52(2) (2002) 92–96. https://doi.org/10.1006/eesa.2002.2144

Ib´anez. J.P, Umetsu. Y, Hydrometallurgy 64(2) (2002) 89–99. https://doi.org/10.1016/S0304-386X(02)00012-9

Lagoa. R, et al., Appl. Biochem. Biotechnol. 143(2) (2007) 115–128. https://doi.org/10.1007/s12010-007-0041-4

N. Kojima, et al., Sens. Actuator B: Chem. 198 (2014) 249–254. https://doi.org/10.1016/j.snb.2014.02.099

S. Sugiura, et al., Biomed. Microdevices 9 (2007) 91–99. https://doi.org/10.1007/s10544-006-9011-9

K. Maeda, et al., Adv. Mater. 24 (2012) 1340–1346. https://doi.org/10.1002/adma.201102560

H. Onoe, et al., RSC Adv. 4 (2014) 30480. https://doi.org/10.1039/C4RA02773F

T.D. Dang, et al., Colloids Surf. B, 102 (2013) 766-711. https://doi.org/10.1016/j.colsurfb.2012.09.016




DOI: https://doi.org/10.51316/jca.2020.010

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA