

Vietnam Journal of Catalysis and Adsorption Tạp chí xúc tác và hấp phụ Việt Nam

https://chemeng.hust.edu.vn/jca/

Investigation of CuMnOx spinel catalyst for toluene oxidation

Tran Thi Thu Hien ^{2,3}, Ly Bich Thuy², Pham Thi Mai Phuong⁴, Le Minh Thang^{1*}

¹School of Chemical Engineering, Ha Noi University of Science and Technology, 01 Dai Co Viet, Ha Noi, Viet Nam ²School of Environmental Science and Technology, Ha Noi University of Science and Technology, 01 Dai Co Viet, Ha Noi, Viet Nam

³Faculty of Natural Sciences , Quy Nhon University, 170 An Duong Vuong, Quy Nhon City, Binh Dinh, Viet Nam ⁴Advanced Institute for Science and Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam

*Email: thang.leminh@hust.edu.vn

ARTICLE INFO

Received: 31/8/2021 Accepted: 17/9/2021 Published: 24/9/2021 Keywords:

CuMnO_x spinel catalyst, toluene, solgel method

ABSTRACT

CuMnO_x spinel catalyst, prepared by the sol-gel method, and characterized by modern techniques such as XRD, BET, H₂-TPR, EPR, were used to oxide toluene in the temperature range from 150°C to 400°C. Among, the investigated catalysts as MnO₂, CuO, and CuMnO_x, the CuMnO_x showed the highest catalytic activity. It converted 100% toluene to CO₂ at 250°C in excessed oxygen conditions. The higher catalytic performance of CuMnO_x than MnO₂, CuO because of its higher specific surface area and its lower reduction temperature. The results also implied that the interaction between Cu and Mn could improve the reduction capacity of CuMnO_x catalyst. In summary, the CuMnO_x catalyst is a promising catalyst for toluene treatment.

Introduction

Volatile organic compounds (VOCs) are polluted substances of great concern because of their impact on the environment and human health [1]. Among VOCs treatment methods, oxidation is a useful method to treat VOCs. Howver, the technique requires high temperature to remove VOCs effectively. Catalytic oxidation is considered as one of the most effective methods to treat VOCs due to the high destruction efficiency at low temperature [2].

The proficiency of catalysts depended on nature and the preparation method. The noble metal-based catalyst are popularly used for VOC oxidation due to high catalytic activity at low temperatures. Besides those, transition metal-based catalyst are also commercially available and comparatively cheaper than precious metal catalysts [3]. Nowadays, the transition metal oxides such as manganese oxides, cobalt oxides, nickel oxides, copper oxides, and mixed metal oxide catalysts were widely investigated. They exhibited high catalytic activity for the oxidation of toluene [4-11]. Among those, copper and manganese are cheaper and more plentiful than nickel and cobalt [12].

In previous studies, the spinel catalyst are one of the most popular mixed transition metal oxides catalysts because of their effective economy [13]. The metal in spinel structure is mostly transitions metal oxides as Mn, Cu, etc. The spinel's general formula is AB₂O₄. The catalysts with the spinel structure have cubic and A cations located in tetrahedral sites, B cations in octahedral sites [14]. Therefore, spinel oxides are applied for numerous technology. The preparation

methods of spinel catalyst consist of sol-gel [14], hydrothermal, co-precipitation [15] and so on.

In recent studies, the CuMnO_x co-precipitation catalyst is one of the well-known transition metal oxides catalysts for CO oxidation at ambient temperature with cheap cost, high catalytic activity. Besides, many literature works show that the catalyst has also been focused on the VOCs oxidation reaction such as propene, toluene, etc [16,17,18]. It has active oxygen species related to Cu and can oxidize CO entirely at room temperature [3]. The performances of CuMnO_x catalysts also were significantly influenced by their structure and preparation method. The presence of manganese oxide can promote CuO reduction, and plays a particular role in oxygen donors [14]. Moreover, it has been studied that the CuMnOx catalysts have no activity after calcinating at temperatures over 500°C, where spinel structure has been formed [3]. Many studies also revealed that spinel transition metal oxides of copper, manganese with general formula AB₂O₄ had long – time stability [12].

Thus, the above information demonstrated that the CuMnO_x catalyst has the potential for VOCs oxidation as toluene. Besides, the Mn–Cu spinel oxide sol-gel catalysts have not been studied for the oxidation of toluene. The research has been investigated to synthesize the Mn–Cu mixed oxides catalyst by sol-gel method and determine its catalytic activity for toluene oxidation process.

Experimental

Preparation of the catalysts

CuMnO_x catalyst was prepared by sol gel method. A solution of $Mn(NO_3)_2$ 50% 0.33 M was mixed to solution Cu $(NO_3)_2.3H_2O$ 0.17 M with molar ratio of Mn/Cu was 1.94 then they formed a solution. Afterward, 20% citric acid solution 0.95 M was added to the solution. The solution was heated to 60°C and evaporated at this temperature until a sticky gel was obtained. The product was dried at 120°C for 12h and calcined at 500°C in air for 3h at a heating rate of 1 min/°C. The catalyst was assigned as CuMnO_x.

Copper oxide and manganese oxide catalysts were prepared under the same conditions and assigned as CuO and MnO₂.

Catalyst characterization

The specific surface areas of the catalysts were determined by N₂ adsorption using a Micromeritics Gemini VII 2390 instrument, GeViCat center, Hanoi University of Science and Technology.

The X-ray diffraction (XRD) patterns were obtained on a D8 Advance Bruker instrument, Faculty of Chemistry, Hanoi University of Science, Vietnam.

The Autochem II 2920 device at GeViCat center, Hanoi University of Science and Technology was used to record H_2 -TPR profile.

EPR spectra were characterized using EMX, micro X system (Brucker, Germany), GeViCat center, Hanoi University of Science and Technology.

The catalyst was also characterized by Nicolet IS50 FT – IR spectrometer, GeViCat center, Hanoi University of Science and Technology.

Catalytic oxidation experiment

The powdered catalyst (0,1 g) was placed in a micro stainless steel reactor. An N₂ flow went through the toluene tank to bring toluene vapor to the microreactor. The inlet toluene flow (about 5000 ppm) was kept stable, and the outlet flow was detected by an online gas chromatograph (GC) with a thermal conductivity detector (TCD). The oxidation reaction was conducted in a micro reactor.

Analysis and calculation of the results

Toluene conversion was determined by the following equation:

$$\eta_{T \ (\%) = \frac{C_T^o - C_T^i}{C_T^i} X \ 100} \ (1)$$

Where, η_T : toluene conversion (%);

 C_T^i : toluene concentration of inlet flow at a temperature T (ppm) ;

 C_T^o : toluene concentration of outlet flow at a temperature T (ppm).

The conversion of toluene to CO_2 was calculated as equation 2:

$$\gamma_{CO_2(\%) = \frac{C_{CO_2,T}^0}{7(C_T^0 - C_T^i)} X \, 100} (2)$$

Where, λ_{CO_2} : the conversion of toluene to CO₂ (%); $C^i_{CO_2,T}$: CO₂ concentration of inlet flow at a temperature T (ppm); $C_{CO_2,T}^0$: CO₂ concentration of outlet flow at a temperature T (ppm).

The g-value or g-tensor for EPR spectra [19] was determined in equation 3:

h.**V**o=**ΔE= gβ**H₀

Where, **h**: Planck's constant = $6.62 \ 10^{-34}$ J.s

V_O: The magnetic field of frequency (Hz) **g**: g value (g tensor) **H**_o: Magnetic field (induction) in Tesla **β**: Bohr magneton = 9,2740154 10⁻²⁴ J/T

Results and discussion

Characterization of the catalyst

BET surface

BET surface areas of synthesized catalysts are presented in Table 1.

No	Catalysts	BET surface area (m ² /g)
1	CuMnOx	25.15
2	CuO	1.50
3	MnO ₂	14.44

Table 1: BET surface areas of the catalysts

The BET surface of the CuMnO_x, CuO, and MnO₂ catalyst were 25.15; 1.50 and 14.44 m²/g respectively. The results showed that CuMnO_x catalyst has the largest BET surface area. The CuO and MnO₂ catalyst possessed lower surface area, especially CuO catalyst has very small BET surface area of 1.5 m²/g. The fact that the combination formation between Cu and Mn positively affects the catalyst's surface area.

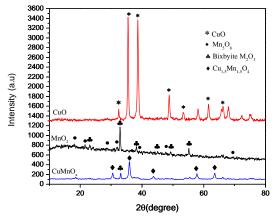


Figure 1: XRD pattern of samples

The CuMnO_x catalyst was characterized by the XRD technique to determine the phase identification and crystalline sizes. The XRD analysis of the catalyst showed the diffraction peaks at 2θ : 30.53° ; 35.93° ; 43.66° ; 57.74° ; 63.45° respectively which corresponds to the lattice (220), (311), (400), (333), (440) of the spinel crystal structure Cu_{1.5}Mn_{1.5}O₄ [20]. The pattern clearly shows the formation of Cu_{1.5}Mn_{1.5}O₄ in the sample. Besides, an amount of Mn₂O₃ was detected in the sample. Thus, the CuMnO_x catalyst has been synthesized successfully.

On the characteristic diffraction XRD of the two pure oxide catalysts, it it is observed the structure of CuO at values 2θ of 32.48° ; 35.52° ; 38.64° ; 48.8° ; 53.3° ; 61.7° ; 66.2° correspond to the (110), (002), (111), (202), (020), (113) and (311) [21]. Besides, The XRD pattern of MnO₂ indicated the diffraction peaks at 2θ : 32.9° (222); 38.28° (400); 45.06° (332); 49.16° (134); 55.16° (440) of bixbyite Mn₂O₃ and structure of Mn₅O₈ was seen in the catalyst [22-24].

The crystalline sizes of samples were determined by the Scherer equation [25], as show in Table 2.

No	Samples	Crystalline sizes (nm)
1	CuMnOx	14.45
2	CuO	22.94
3	MnO ₂	23.64

Table 2: Crystalline size of the catalysts

As a result, it was recorded that pure oxide catalysts prepared by the sol-gel method produced larger particle sizes than mixed oxides catalysts; and the formation of mixed oxide between Cu and Mn led to the decrease of crystalline sizes.

H2 – TPR

Figure 2 displays H_2 – TPR pattern of CuMnOx , MnO_2 and CuO catalysts.

To explain clearly the reason for the higher catalytic activity of the CuMnO_x solgel, TPR- H_2 measurements were shown to determine the oxidation-reduction properties of the catalysts, as Fig. 2.

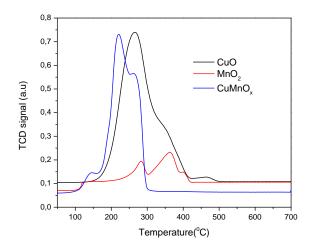
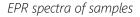
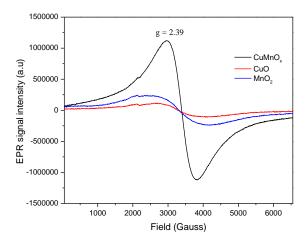


Figure 2: H2 – TPR pattern of samples

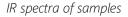
Table. 3: Consumed hydrogen amount (mol/g) of two pure single oxides (MnO₂, CuO) and the mixed oxides (CuMnO_x)


Catalysts	Consumed hydrogen (mmol/g)	Temperature at maximum (°C)			
MnO ₂	0.63035	282.4			
101102	2.12913	364.1			
CuO	10.2312	26.,2			
Cue	0.0666	466.9			
	0.0235	141.6			
CuMnO _x	0.3215	235.3			
	0.2031	275.1			

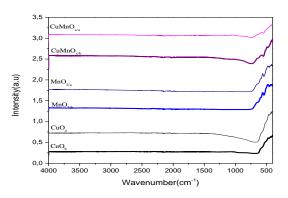

The TPR profile for MnO_2 displayed two peaks, centred at 282.4 and 364.1°C, assigned to the reduction of MnO_2 to Mn_xO_y [26, 27].

The TPR profile for CuO consisted of two peaks, assigned to the reduction of CuO, *i.e.*, Cu^{2+} to Cu^{+} (265.2°C) and Cu⁺to CuO (466.9 °C) [28- 29].

In spinel CuMnO_x catalyst, a significant change in the TPR profile was observed. The reduction of MnO_2 was shifted to lower temperatures. Three main reduction peaks corresponding to the reduction of MnO_2 to Mn_2O_3 (141°C), Mn_2O_3 to Mn_3O_4 (235.3°C), and Mn_3O_4 to MnO (275.1 °C) could be observed [30].


The total mol of consumed hydrogen in spinel catalyst also decreased. These effects may be due to the interactions of Mn-Cu oxides. Results obtained from H₂-TPR showed that the interactions Mn-Cu oxides in the spinel catalyst can reduce the reduction temperature of the catalyst. It means that the spinel catalyst can catalyze the oxidation reaction at the lower temperature than pure MnO₂ or CuO catalyst.

The EPR spectra of all studied samples are shown in Figure 3. EPR spectroscopy was employed to obtain additional information on the nature of the active phase species. The spectrum of the CuMnO_x catalyst displays an axial symmetry with a calculated g = 2.39. This signal was assigned to isolated Cu²⁺ ions in octahedral coordination with tetragonal distortion. The lack of EPR signal characteristic for Mn species revealed that most likely they exist as Mn⁴⁺[31,32].



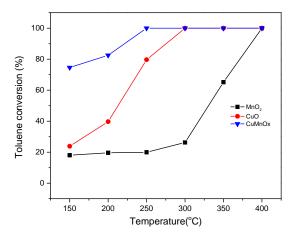

Figure 4 : IR profile of catalysts

Figure 4 shows IR spectra of pure oxides and CuMnO_x catalysts. The MnO_2 catalyst before and after the reaction possessed peaks at wavenumber between 427 to 482 and 563 cm⁻¹ belong to manganese oxides [33,34]. IR spectra also exhibit two vibrations appearing 476 cm⁻¹, 530 cm⁻¹, for CuO catalyst, which can be same as the vibrations of Cu-O, confirming the formation of pure CuO catalyst [35].

CuMnO_x catalyst had a CuO group (530cm⁻¹), and the peaks of manganese oxides did not appear in the mixed oxides [3]. Thus, IR spectra showed no adsorbed water or organic substances on the catalyst's surface. It also means that no difference between catalysts before and after the reaction.

Catalytic activity for toluene oxidation

Toluene oxidation was performed on some catalysts labeled as $CuMnO_{x_r}$ CuO and MnO_2 The experiment results are described in Fig. 5, and Fig. 6

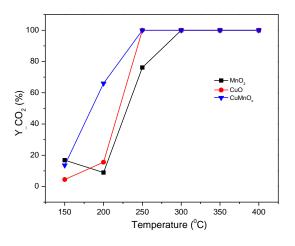


Figure 5: Toluene conversion

Figure 6: CO₂ yield

Results of catalyst conversion of toluene with the initial concentration of 5000 ppm are shown in Fig 5. When the reaction temperature increased from 150°C to 400°C, the toluene conversion percentage was increased. For the CuMnO_x catalyst, maximum toluene conversion reached at 250°C, and the MnO₂ catalyst showed complete toluene conversion at 400°C. Meanwhile, the CuO catalyst only exhibited complete toluene conversion from 300°C. Thus, the CuMnO_x catalyst indicated better catalytic performance than the pure MnO₂ and CuO catalysts (T₁₀₀ = 250°C).

Moreover, in Fig 6, toluene is also completely converted into CO_2 at 250°C. In comparison, yield CO_2 over MnO_2 and CuO catalysts was lower at this temperature. Therefore, it could be concluded that the catalytic activity of the $CuMnO_x$ catalyst was higher than the pure CuO, MnO_2 catalyst. The reason may be that a combination between manganese and copper helps increase the ability to oxidize toluene.

In the previous studies, the CuMnO_x spinel catalysts (Cu_{1.5}Mn_{1.5}O₄) were prepared by co-precipitation and used widely for CO oxidation (T₁₀₀ = 120°C) [14]. However, few studies synthesized the catalysts (Cu_{1.5}Mn_{1.5}O₄) by the sol-gel method for toluene oxidation. Thus, our results demonstrated that the CuMnO_x catalyst synthesized by sol-gel methods is a potential catalyst to apply in gaseous pollutant treatment.

Compared to the copper-doped manganese oxide nanorod catalysts (1000 ppm toluene, $T_{90} = 214^{\circ}$ C) [36], CuMnO_x spinel catalyst (5000 ppm toluene, $T_{100} = 250^{\circ}$ C) was synthesized more simple and exhibited the high catalytic activity.

Conclusions

Copper manganese oxide catalyst, copper oxide, and manganese oxide were prepared via the sol-gel method. The combination of copper oxide and manganese oxide increase BET surface area of the copper, manganese mixed oxide catalysts, decrease the reduction temperature of the catalyst and enhance the performance of toluene oxidation.

The experimental results showed that the CuMnO_x exhibited excellent catalytic performance in the toluene conversion at 250°C and completely converted toluene into CO_2 at this temperature.

Acknowledgments

Tran Thi Thu Hien was funded by Vingroup Joint Stock Company and supported by the Domestic Master/ PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), Vingroup Big Data Institute (VINBIGDATA), VINIF.2020.TS.80.

The authors thank the supports of Vingroup Joint Stock Company, VINF, VINBIGDATA.

References

- 1. C. H. Wang, Chemosphere 55 (2004) 11-17. https://doi.org/10.1016/j.chemosphere.2003.10.036.
- M. Alifanti, M. Florea, V. I. Pârvulescu, Applied Catalysis B: Environmental 70 (2007) 400-405. https://doi.org/10.1016/J.APCATB.2005.10.037
- 3. S. Dey, N.S. Mehta, Resources, Environment and Sustainability 4 (2021). https://doi.org/10.1016/j.resenv.2021.100025
- M. R. Morales, B. P. Barbero, Appl. Catal. B: Environmental 67 (2018) 229-236. https://doi.org/10.1016/j.apcatb.2006.05.006
- M. Piumetti, S. Bensaid, D. Fino, N. Russo, Appl. Catal. B: Environmental 197 (2016) 35-46. https://doi.org/10.1016/j.apcatb.2016.02.023
- Wang L., Wang Y., Zhang Y., Yu Y., He H., Qin X., Wang B., Catal. Sci. Techno 6 (2016) 4840-4848. https://doi.org/10.1039/C6CY00180G
- G. Zhou, X. He, S. Liu, H. Xie, M. Fu, J. Indust. Eng. Chem 21 (2015) 932–941. https://doi.org/10.1016/j.jiec.2014.04.035
- X. Xie.; Y. Li, Z. Liu, M. Haruta, W. Shen, Nature 458 (2009) 746 – 749. https://doi.org/10.1038/nature07877
- J. C. Lou, H. W. Yang, C. H. Lin, Aerosol and Air quality Research 9 (2009) 435 – 440. https://doi.org/10.4209/aaqr.2009.05.0027
- 10. M. H. Habibi, B. Karimi, J. Indust. Eng. Chem, 20 (2013) 1566 – 1570. https://doi.org/10.1016/J.JIEC.2013.07.048
- R. Manigandana, K. Giribabua, R. Suresha, L. Vijayalakshmib, A. Stephenc, V. Narayanana, Chem. Sci. Trans 2 (2013) S47 S50. https://doi.org/ 10.7598/cst2013.10
- A. Hadded, J. Massoudi, E. Dhahri, K. Khirouni, B.F.O.Costa, RSV Adv 10 (2020) 42542 – 42556. https://doi.org/10.1039/D0RA08405K
- A.S. Albuquerque, M.V.C. Tolentino, J.D. Ardisson, F.C.C. Moura, R. de Mendonca, W.A.A Macedo, Cream. Int 38 (2012) 2225 – 2231. http://dx.doi.org/10.1016/jceramint.2011.10.071

- L. N. Cai, Y. Guo, A. H. Lu, P. Branton, W. C. Li, Journal of Molecular Catalysis A: Chemical 360 (2012) 35–41. http://doi.org/10.1016/j.molcata.2012.04.003
- S. Mobini, F. Meshkani, M. Rezaei, The 10th International Chemical Engineering Congress & Exhibition (IChEC 2018), At Isfahan Iran (2018).
- S. Behar, P. Gonzalez, P. Agulhon, F. Quignard, D. Swierczy ´nski, Catal. Today 189 (2012) 35–41. https://doi.org/10.1016/j.cattod.2012.04.004
- B. H. Napruszewska, A. Michalik., A. Walczyk., D. Duraczy ´nska, R. Dula, W. Rojek, L. Lity ´nska-Dobrzy ´nska, K. Bahranowski, E. M. Serwicka, Materials 11 (2018). https://doi.org/10.3390/ma11081365
- 18. T. J. Clarke, S. A. Kondrat., S. H. Taylor, Catal. Today 258 (2015) 610-615.
- N. Senesi, G.S. Senesi, Encyclopedia of Soils in the Environment: Electron – spin resonance spectroscopy, Elsevier, 2005, 426 – 437. http://doi.org/10.1016/b0-12-348530-4/00209-5
- R. B. Irawan, P. Purwanto, H. Hadiyanto, Int Conf Trop Coast Reg Eco-Dev 23 (2015) 86–92. https://doi.org/10.1016/j.proenv.2015.01.013
- D. Zhu, L. Wang, W. Yu, H. Xie, Scientific reporters 8 (2018). https://doi.org/10.1038/s41598-018-23174-z
- 22. G. Zheng, W. Zhang, R. Shen, J. Ye, Z. Qin, Y. Chao, Scientific Reports 6 (2016). https://doi.org/10.1038/srep22588
- L. Chen, T. Zhang, H. Cheng, Ryan M. Richards, Z. Qi, Nanoscale 12 (2020) 17902-179144. https://doi.org/10.1039/D0NR04738D
- Muniz F. T. L., Miranda M. A. R., Morilla dos Santos C., Sasaki J. M., Acta Crystallographica Section A Foundations and Advances 72 (2016) 385–390. https://doi.org/10.1107/S205327331600365X
- W. Yang, Y. Peng, Y. Wang, H. Liu, Z. Su, W. Yang, J. Chen, W. Si, J. Li, Applied Catalysis B: Environmental, 278 (2020). http://doi.org/10.1016/j.apcatb.2020.119279
- M. H. Kim, K. H. Cho, C.H. Shin, S.E. Kang, S.W. Ham, Korean J. Chem. Eng 28 (2011) 1139-1143. http://doi.org/10.1007/s11814-011-0035-3
- 27. J. Xue, J. Q. Wang, G. S. Qi, J. Wang, M.Q. Shen, W. Li, J. Catal. 297 (2013) 56–64. https://doi.org/10.1016/j.jcat.2012.09.020
- A. Bienholz, R. Blume, A. Knop-Gericke, F. Girgsdies
 M. Behren, P. Claus, J. Phys.Chem. C 115 (2011) 999–1005. https://doi.org/10.1021/jp104925k

https://doi.org/10.51316/jca.2021.068

- Z. Wang, Z. Niu, Q. Hao, L. Ban, H. Li, Y.X Zhao, Z. Jiang, Catalysts, 9 (2019). https://doi.org/10.3390/catal9010035
- M.H. Kim, K.H. Cho, C.H. Shin, S.E. Kang, S.W. Ham, Korean J. Chem. Eng. 28 (2011) 1139-1143. http://doi.org/10.1007/s11814-011-0035-3
- T. Tabakova, E. Kolentsova, D. Dimitrov, K. Ivanov, M. Manzoli, A. M. Venezia, Y. Karakirova, P. Petrova, D. Nihtianova, G. Avdeev, Top Catal 60 (2017) 110–122. https://doi.org/10.3390/catal8110563
- 32. T. H. Bennur, D. Srinivas, P. Ratnasamy, Microporous and Mesoporous Materials 48 (2011) 111–118.

http://doi.org/10.1016/s1387-1811(01)00345-6

- D. V. Azamat, A. Dejneka, J. Lancok, V. A. Trepakov, L. Jastrabik, A. G. Badalyan, Journal of Applied Physics, 111 (2011). http://doi.org/10.1063/1.4723653
- 34. L. Kang, M. Zhang, Z.H. Liu, K. Ooi, Spectrochimica Acta Part A 67 (2007) 864–869. https://doi.org/10.1016/j.saa.2006.09.001
- A. Azam, A. S. Ahmed, M Oves, M.S Khan, A. Memic, International Journal of Nanomedicine 7 (2012) 3527–3535.
- J. Hu, W. B. Li, R. F. Liu, Catalysis Today 314 (2018) 147–153. http://doi:org/10.1016/j.cattod.2018.02.009