

Vietnam Journal of Catalysis and Adsorption Tạp chí xúc tác và hấp phụ Việt Nam

http://chemeng.hust.edu.vn/jca/

Vật liệu nano REVO₄ (RE=La, Pr, Nd): Tổng hợp và khảo sát hoạt tính xúc tác quang phân hủy một số phẩm nhuộm

REVO₄ (RE=La, Pr, Nd) nanocrystals: Synthesis and investigation of photocatalytic degradation of some dyes

Nguyễn Văn Hải^{*}, Nguyễn Thị Hường

^{*}Khoa Hóa học, Trường Đại học Sư phạm Hà Nội, 136 Xuân Thủy, Cầu Giấy, Hà Nội *Email: hainv@hnue.edu.vn

ARTICLE INFO

Received: 15/2/2021 Accepted: 15/7/2021 Published: 10/8/2021

Keywords:

rare-earth vanadate nanoparticles, moderacid red RS, direc yellow GX, photocatalytic activity Hội thảo "Khoa học và Công nghệ Hóa vô cơ lần thứ V" - Hà Nội 2021

ABSTRACT

In this, work, a series of REVO₄ (RE = La, Pr, Nd) nanoparticles were successfully fabricated by the hydrothermal method. The as-synthesized REVO4 nanoparticles were characterized by various techniques of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities of obtained products were investigated by photodegradation of moderacid red RS and direct yellow GX under visible light. The NdVO₄ photocatalyst showed higher discoloration of organic dyes than LaVO₄ and PrVO₄. About 64% moderacid red RS was degraded within 150 minutes catalyzed by the catalyst NdVO₄.

Giới thiệu chung

Hiện nay, sự phát triển mạnh của các làng nghề dệt nhuộm đang kéo theo hiện trạng ô nhiễm nguồn nước tại làng nghề, gây ảnh hưởng đến môi trường sống và sức khỏe người dân. Với đặc thù sử dụng nhiều nước, hóa chất, thuốc nhuộm trong khi quy mô sản xuất nhỏ, thủ công nên không có hệ thống xử lí nước thải bài bản do chi phí lắp đặt cao.

Để xử lí ô nhiễm, vật liệu vanadat đã được khảo sát có tiềm năng ứng dụng làm xúc tác quang phân hủy các hợp chất màu hữu cơ bởi các đặc tính bền cơ học, xúc tác ở vùng khả kiến, hiệu suất xúc tác khá cao và khả năng tái sử dụng nhiều lần [1-4, 6].

Trong nghiên cứu, vật liệu REVO₄ (RE = La, Pr, Nd) chế tạo bằng phương pháp thủy nhiệt được dùng làm xúc tác quang phân hủy phẩm nhuộm đỏ cờ axit

(Moderacid Red RS, $C_{20}H_{11}N_2Na_3O_{10}S_3$) và phẩm nhuộm vàng trực tiếp (Direct Yellow GX, $C_{30}H_{26}N_4Na_2O_8S_2$).

Thực nghiệm và phương pháp nghiên cứu

Tổng hợp và xác định cấu trúc

Cho từ từ dung dịch RE(NO₃)₃ vào cốc đựng dung dịch NH₄VO₃, điều chỉnh pH bằng 12 và khuấy từ ở 80°C để phản ứng hoàn toàn.

Chuyển sản phẩm trong cốc vào bình thủy nhiệt, nung ở 200°C trong 8 giờ, thu được vật liệu REVO4.

Toàn bộ quá trình tổng hợp vật liệu $\rm REVO_4\,duợc$ biểu diễn trên Hình 1.

Vật liệu REVO₄ được xác định cấu trúc và hình thái bằng phương pháp XRD, phổ UV-Vis, chụp ảnh SEM, phổ tán sắc năng lượng tia X và đo diện tích bề mặt riêng BET. Giản đồ XRD được ghi trên máy Siemens D5005 với bức xạ CuKα tại Khoa Vật lí, Trường Đại học Khoa học Tự nhiên. Ảnh SEM của vật liệu được ghi trên máy Hitachi S-4800 tại Viện Vệ sinh Dịch tễ Trung ương.

Hình 1: Sơ đồ tổng hợp vật liệu nano REVO4 bằng phương pháp thủy nhiệt

Khảo sát hoạt tính xúc tác

Vật liệu xúc tác REVO₄ được khảo sát với hàm lượng 1 g/L, nồng độ phẩm nhuộm là 20 ppm. Đầu tiên, hệ xúc tác quang được khuấy từ 30 phút trong bóng tối để đạt cân bằng hấp phụ. Sau đó, hệ xúc tác được chiếu bức xạ khả kiến dưới ánh sáng bóng đèn sợi đốt 200W. Mẫu dung dịch được lấy định kì theo thời gian, li tâm và được đo quang ở bước sóng cực đại để xác định nồng độ phẩm nhuộm còn lại trên máy UV-Vis S60 Biochorom tại Khoa Hóa học, Trường Đại học Sư phạm Hà Nội.

Kết quả và thảo luận

Khảo sát điều kiện tổng hợp

Vật liệu LaVO4 sau khi thủy nhiệt ở 200°C được xác định cấu trúc bằng giản đồ XRD (Hình 2).

Hình 2: Giản đồ XRD của vật liệu LaVO₄ sau khi thủy nhiệt ở 200°C

Kết quả cho thấy, vật liệu LaVO₄ tồn tại ở hai pha tinh thể là monoclinic (60%) và tetragonal (40%). Tiếp tục nung đến 600°C trong 4 giờ, thu được vật liệu LaVO₄ gần như đơn pha monoclinic. Như vậy, pha monoclinic bền hơn ở nhiệt độ cao (Hình 3).

Hình 3: Giản đồ XRD của vật liệu LaVO₄ sau khi nung ở 600°C

Hình 4: Giản đồ XRD của vật liệu PrVO₄ sau khi thủy nhiệt ở 200°C

https://doi.org/10.51316/jca.2021.055 83

Hình 5: Giản đồ XRD của vật liệu NdVO₄ sau khi thủy nhiệt ở 200°C

Các vật liệu PrVO₄ và NdVO₄ sau khi thủy nhiệt ở 200°C đều đơn pha tinh thể tetragonal (Hình 4, 5).

Xác định cấu trúc vật liệu

Trước hết, cấu trúc vật liệu được xác định bằng phương pháp nhiễu xạ tia X. Tinh thể LaVO₄ có cấu trúc monoclinic ứng với thẻ chuẩn JCPDS số 14-0688, nhóm không gian I2/a [1]. Tinh thể PrVO₄ có cấu trúc tetragonal (JCPDS số 84-1457, nhóm không gian I41/amd [2-3]. Tinh thể NdVO₄ có cấu trúc tetragonal (JCPDS số 15-0769, nhóm không gian I41/amd [4-7]. Kích thước trung bình của tinh thể được xác định theo công thức Scherrer (Bảng 1).

Bảng 1: Kích thước trung bình của tinh thể (D)

Vật liệu	β (rad)	20 (°)	D (Å)
LaVO ₄	3,97×10 ⁻³	28,00	36,0
PrVO ₄	43,91×10 ⁻³	24,40	3,2
NdVO ₄	29,99×10 ⁻³	24,44	4,7

Tiếp theo, các nguyên tố trong thành phần của vật liệu được xác định bằng phép đo EDX (Hình 6).

Hình 6: Giản đồ EDX của vật liệu REVO₄

Kết quả cho thấy tỉ lệ số nguyên tử của các vật liệu pha tạp khá phù hợp với thành phần lí thuyết và được trình bày ở Bảng 2.

Bảng 2: Tỉ lệ về số nguyên tử mỗi nguyên tố tron	١g
vật liệu REVO4	

Vật liệu	RE	V	0
LaVO ₄	1,0	0,9	4,5
PrVO ₄	1,0	1,1	5,9
NdVO ₄	1,0	1,2	5,1

Hình 7: Phổ UV-Vis của vật liệu REVO₄ https://doi.org/10.51316/jca.2021.055

Một thông số quan trọng ảnh hưởng đến khả năng xúc tác của chất xúc tác bán dẫn là độ rộng vùng cấm, do vậy phổ hấp thụ UV-Vis của các vật liệu đã được ghi lại (Hình 6). Kết quả trên Hình 6 cho thấy vật liệu REVO₄ có bước sóng hấp thụ nằm trong vùng khả kiến và tử ngoại gần (Hình 7).

Từ số liệu Hình 7 ước tính được độ rộng vùng cấm của vật liệu và được so sánh với các giá trị đã công bố khi khảo sát đồ thị $(\alpha hv)^2$ phụ thuộc hv theo phương pháp Tauc (Bảng 3).

Vật liệu	λ, nm	E _g , eV	Giá trị so sánh
LaVO ₄	500	2,48	2,50 eV [1]
PrVO ₄	450	2,76	3,29 eV [2]
NdVO ₄	390	3,19	3,72 eV [4]

Bảng 3: Độ rộng vùng cấm vật liệu REVO4

Hình thái bề mặt và kích thước hạt của vật liệu đã được xác định trên ảnh SEM (Hình 8).

(C)

Hình 8: Ảnh SEM của vật liệu LaVO₄ (a), PrVO₄ và NdVO₄ (c)

Kết quả cho thấy các hạt vật liệu tương đối rời rạc, kích thước hạt trung bình khoảng 50 nm. Ngoài ra, quá trình xúc tác dị thể xảy ra trên bề mặt xúc tác nên phụ thuộc vào diện tích bề mặt riêng của chất xúc tác. Kết quả đo diện tích bề mặt riêng S_{BET} đối với hệ NdVO₄ là 58,30 m²/g. Kết quả này thấp hơn so với giá trị công bố là 80,88 m²/g [4].

Hoạt tính xúc tác của vật liệu

Ảnh hưởng của thời gian xúc tác

Hoạt tính xúc tác quang của vật liệu REVO₄ trong phản ứng phân hủy moderacid red RS được khảo sát trong khoảng thời gian từ 0 đến 150 phút. Kết quả được đưa ra ở Hình 9.

Hình 9: Độ chuyển hóa moderacid red RS theo thời gian trên xúc tác REVO₄

Kết quả ở Hình 9 cho thấy, vật liệu NdVO₄ có độ chuyển hóa tốt nhất, đạt 64% sau 150 phút chiếu sáng. Hiệu suất chuyển hóa các chất màu hữu cơ khác trên xúc tác NdVO₄ như sau: Eriochorme black T là 47,5% [4], malachite green là 17,5% [4], methyl orange là 29,8% [6] và Rhodamine B là 66% [6].

Dựa trên cơ chế xúc tác chung của vật liệu bán dẫn và kết quả nghiên cứu các hệ tương đồng [1-4], cơ chế xúc tác của vật liệu REVO_4 được đề xuất như sau:

$$\mathsf{REVO}_4 + \mathsf{h} \mathsf{v} \rightarrow \mathsf{REVO}_4[\mathsf{e}^- + \mathsf{h}^+]$$

 $\mathsf{REVO}_4[e^-] + \mathsf{O}_2 \rightarrow \mathsf{REVO}_4 + \cdot \mathsf{O}_2^-$

$$\mathsf{REVO}_4[\mathsf{h}^+] + \mathsf{OH}^- \rightarrow \mathsf{REVO}_4 + \mathsf{HO}^{\cdot}$$

Hình 10: Minh họa cơ chế tạo tiểu phân hoạt động trên bề mặt xúc tác REVO₄

Gốc supeoxit O_2^- , gốc hydroxyl HO· và lỗ trống (h⁺) là các tác nhân oxi hóa mạnh, chuyển hóa phân tử phẩm nhuộm trên bề mặt xác tác REVO₄ thành các sản phẩm hữu cơ và vô cơ đơn giản.

Ảnh hưởng của phẩm nhuộm

Kết quả ở Bảng 4 minh họa khả năng xúc tác của vật liệu REVO₄ để chuyển hóa phẩm nhuộm moderacid red RS và direct yellow GX.

Bảng 4: Độ chuyển hóa phẩm nhuộm trên xúc tác REVO₄ sau 150 phút chiếu sáng

Phẩm nhuộm	LaVO ₄	PrVO ₄	NdVO ₄
moderacid red RS	43%	54%	64%
direct yellow GX	24%	33%	23%

Kết quả cho thấy hoạt tính xúc tác quang của REVO₄ đối với moderacid red RS cao hơn direct yellow GX. Công thức cấu tạo của hai phẩm nhuộm này được trình bày tương ứng ở Hình 11.

Hình 11: Cấu tạo phân tử moderacid red RS và direct yellow GX

Kết luận

Trong nghiên cứu này, vật liệu nano REVO₄ được tổng hợp bằng phương pháp thủy nhiệt và thủy nhiệt-nung, LaVO₄ có cấu trúc monoclinic, $PrVO_4$ và NdVO₄ đều có cấu trúc tetragonal, kích thước các hạt ~ 50 nm.

Các vật liệu REVO₄ đều có khả năng xúc tác chuyển hóa phẩm nhuộm moderacid red RS và direct yellow GX, trong đó NdVO₄ chuyển hóa 64% moderacid red RS sau 150 phút chiếu sáng.

Tài liệu tham khảo

- M. Samy, M. G. Ibrahim, M. G. Alalm, M. Fujii, Sep. Purif. Technol. 235 (2020) 116138. https://doi:10.1016/j.seppur.2019.116138.
- R. Monsef, M. G Arani, O. Amiri, M. S. Niasari, Ultrason Sonochem, Volume 61 (2020) 104822. https://doi.org/10.1016/j.ultsonch.2019.104822
- 3. M. A. Marsooli, M. R. Nasrabadi, M. F. Ramandi, Polyhedron, Volume 176 (2020) 114239. https://doi.org/10.1016/j.poly.2019.114239
- 4. R. Monsef, M. G. Arani, M. S. Niasaria, Ultrason Sonochem 42 (2018) 201-211. https://doi.org/10.1016/j.ultsonch.2017.11.025
- L. Tian, Y. Li, H. Wang, S. Chen, J. Wang, Z. Guo, Q. Liu. J. Rare Earths 36 (2018) 179-183. http://dx.doi.org/10.1016/j.jre.2017.04.010
- 6. J. Xu, C. Hu, G. Liu, H. Liu, G. Du, Y. Zhang, J. Alloys Compd 509 (2011) 7968–7972. https://doi:10.1016/j.jallcom.2011.05.051
- S. Yuvaraj, R. K. Selvan, V. B. Kumar, I. Perelshtein, A. Gedanken, S. Isakkimuthu, S. Arumugam, Ultrason Sonochem 21 (2014) 599–605. http://dx.doi.org/10.1016/j.ultsonch.2013.08.015