

Vietnam Journal of Catalysis and Adsorption Tạp chí xúc tác và hấp phụ Việt Nam

http://chemeng.hust.edu.vn/jca/

Nghiên cứu chế tạo hệ vật liệu bột nano Cu₂O, Cu₂O-C₃N₄ và đánh giá khả năng phân hủy chất màu hữu cơ dưới chiếu xạ ánh sáng nhìn thấy

Synthesis of Cu_2O and $Cu_2O-C_3N_4$ nanomaterials for the photodegradation of organic dyes under visible light irradiation

Nguyễn Thị Lan¹, Nguyễn Thị Tuyết Mai^{1,*}, Đặng Thị Minh Huệ¹, Trần Thị Thu Huyền¹, Nguyễn Kim Ngà¹, Trịnh Xuân Anh¹, Tạ Ngọc Dũng¹, Huỳnh Đăng Chính¹, Nguyễn Công Tú², Lưu Thị Lan Anh²

¹Viện Kỹ thuật Hóa học, Trường Đại học Bách Khoa Hà Nội, Số 1 Đại Cồ Việt, Hà Nội, Việt Nam ²Viện Vật lý Kỹ thuật, Trường Đại học Bách Khoa Hà Nội, Số 1 Đại Cồ Việt, Hà Nội, Việt Nam *Email: mai.nguyenthituyet@hust.edu.vn

ARTICLE INFO

Received: 15/2/2021 Accepted: 15/8/2021 Published: 20/8/2021

Keywords:

 Cu_2O , C_3N_4 , octahedral Cu_2O - C_3N_4 crystals, photocatalysts, visible light irradiation

Hội thảo "Khoa học và Công nghệ Hóa vô cơ lần thứ V" - Hà Nội 2021 ABSTRACT

These experiment fabricated C_3N_4 powdermaterials by the calcinational method and fabricated Cu₂O, Cu₂O-3%C₃N₄, Cu₂O-5%C₃N₄ nanomaterials by the hydrothermal method. The powdermaterials characteristics were studied by methods such as: X-ray diffraction (XRD); raman shift; scanning electron microscope (SEM); UV-vis solid absorption spectra. The photocatalytic activity of samples was studied by decomposition of methylene blue dye under visible light radiation. The results showed that the fabricated C_3N_4 sample was single phase with high porosity cotton structure. The Cu₂O, Cu₂O-3%C₃N₄ and Cu₂O-5%C₃N₄ samples had octahedral crystal structure with the crystal particle size was about 200-300 nm. The C₃N₄ doped Cu₂O samples had octahedral crystal particles arranged more closely than that of Cu₂O and filled in gaps by cotton, porous clusters of C₃N₄. The materials all had the absorption spectra expanded in the visible light region ($\lambda \approx 450-900$ nm). The C₃N₄ doped Cu₂O samples achieved the better photocatalytic efficiency than Cu₂O and C₃N₄ samples in visible light region. The highest photocatalytic efficiency achieved 100% was of the Cu₂O-3%C₃N₄ sample in the photodegradation of methylene blue dye after 30 minutes under visible light irradiation.

Giới thiệu chung

Như chúng ta đã biết, oxit đồng I (Cu₂O) là chất bán dẫn loại p có năng lượng vùng cấm trực tiếp nhỏ 2,0-2,2 eV [1-2]. Vì vậy Cu₂O có lợi thế hơn trong việc sử dụng ánh sáng mặt trời so với các chất bán dẫn có năng lượng vùng cấm rộng như TiO₂, ZnO, SnO₂, CdS, ZnWO₄... [2-4,7,8]. Mặt khác, Cu₂O có nhiều đặc tính nội tại có lợi khác như độc tính thấp, thân thiện với môi trường, nguồn nguyên liệu đầu được sử dụng là đồng có sẵn nhiều trong tự nhiên, giá thành thấp, quy trình chế tạo vật liệu đơn giản không tốn kém [1-4]. Do những ưu điểm này nên vật liệu Cu2O có ứng dụng tiềm năng trong đa dạng các lĩnh vực: quang điện, chất xúc tác quang, cảm biến khí, cảm biến sinh học, pin mặt trời hiệu suất cao... [2,4,5]. Tuy nhiên nhiều nghiên cứu đã cho thấy, các hạt nano xúc tác quang Cu₂O khi được chiếu ánh sáng hoạt động như các điện cực ngắn mạch. Việc tái tổ hợp của điện tử-lỗ trống guang sinh là một hạn chế lớn trong việc cải thiện hiệu quả xúc tác quang của Cu₂O [1,2,5,9]. Gần đây, chất bán dẫn polyme loại n và không chứa kim loại cacbon nitrua C₃N₄ gần giống với than chì (g-C₃N₄) cũng đã gây được nhiều sự chú ý trong lĩnh vực làm chất xúc tác quang. Độ rộng vùng cấm quang của C₃N₄ được xác định là 2,7 eV được coi là cảm ứng tốt dưới chiếu xạ ánh sáng nhìn thấy [6]. Nhưng, cũng giống như chất xúc tác quang Cu₂O, hiệu suất xúc tác quang của cacbon nitrua C₃N₄ tinh khiết vẫn tương đối thấp do sự tái tổ hợp nhanh chóng của cặp điện tử-lỗ trống quang sinh [6,9]. Để nâng cao hiệu suất xúc tác quang của vật liệu thì nhiều nghiên cứu đã phát triển loại vật liệu kết hợp của C₃N₄ với các chất bán dẫn khác như Cu₂O, TiO₂, ZnO, CdS... để nhằm khắc phục nhược điểm của vật liệu bán dẫn tinh khiết là làm giảm tốc độ tái kết hợp của cặp điện tử-lỗ trống quang sinh [6-9]. Tuy vậy, những báo cáo về loại vật liệu kết hợp này vẫn còn chưa được phát triển nhiều trong các nghiên cứu trong nước.

Với những phân tích trên, trong nghiên cứu này chúng tôi đã thực hiện chế tạo hệ vật liệu bột nano Cu_2O , $Cu_2O-C_3N_4$ và đánh giá khả năng phân hủy chất màu hữu cơ dưới chiếu ánh sáng nhìn thấy. Nhằm phát triển những ứng dụng trong lĩnh vực xử lý chất màu trong ngành công nghiệp trong nước.

Thực nghiệm và phương pháp nghiên cứu

Hóa chất sử dụng

Hóa chất sử dụng trong nghiên cứu gồm: Đồng sunphat (CuSO₄.5H₂O 99,9%, AR-China); Natri Sunfit (Na₂SO₃ 99,9%, AR-China); Urea ((NH₂)₂CO ≥46,3%, AR-Vietnam); nước cất 2 lần.

Quy trình thực nghiệm

+ Chế tạo bột g-C₃N₄ bằng phương pháp ngưng tụ nhiệt: Cho 50g Urea ($(NH_2)_2CO$) vào cối mã não rồi nghiền mịn, rồi cho vào chén sứ bọc kín bằng giấy tráng nhôm (nhằm ngăn cản sự thăng hoa của tiền chất cũng như làm tăng cường sự ngưng tụ tạo thành Cacbon nitrua C₃N₄). Tiếp theo, chén sứ chứa mẫu này

được đem nung ở 500°C trong 1 giờ với tốc độ gia nhiệt 5°C/phút. Sản phẩm sau nung thu được là chất bột màu vàng nhạt, đó là bột mịn polyme C₃N₄.

+ Chế tạo bột nano Cu₂O pha tạp C₃N₄ bằng phương pháp thủy nhiệt: đồng sunphat CuSO₄.5H₂O và natri Sunfit Na₂SO₃ được pha với nồng độ 0,1M. Trộn lẫn dung dich CuSO₄ 0,1M và dung dịch Na₂SO₃ 0,1M theo tỉ lệ về thể tích là 1:10. Dụng dịch hỗn hợp có màu màu xanh nhat. Khuấy đều hỗn hợp dung dịch trên máy khuấy từ ở tốc độ không đổi 250 rpm trong 30 phút thì bắt đầu gia nhiệt đến nhiệt độ 90°C và giữ ổn định ở nhiệt độ này. Tiếp theo, thêm C₃N₄ với các tỉ lệ phần trăm về số mol %Cu2O/%C3N4 lần lượt là 0%, 3%, 5% và khuấy đến khi dung dịch kết tủa màu nâu đỏ. Hỗn hợp dung dịch được khuấy tiếp tục thêm 30 phút nữa. Sau đó, các hỗn hợp này được đem thủy nhiệt 120°C trong 48 giờ. Kết tủa thu được sau thủy nhiệt được rửa nhiều lần bằng nước cất và lọc bằng giấy lọc. Sản phẩm bột sạch đem sấy khô ở 100°C trong 24 giờ. Sản phẩm thu được là các bột Cu₂O, Cu₂O pha tạp 3%, 5% C₃N₄ mịn màu đỏ nâu, được ký hiệu tương ứng là Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄ Hình 1 là sản phẩm mẫu bột mịn chế tạo polyme C₃N₄ và các mẫu bột nano Cu₂O, Cu₂O pha tạp C₃N₄.

Hình 1: Sản phẩm mẫu bột chế tạo C₃N₄ và các mẫu bột nano Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄

+ Vật liệu chế tạo được nghiên cứu các đặc tính bằng các phương pháp: Phương pháp nhiễu xạ tia X (XRD, X'pert Pro (PANalytical) MPD, tia bức xạ Cu-K^α (λ=1.54065 Å), tốc độ quét 0.03°/2s, với góc quét 2θ≈ 25-75°); phương pháp phổ raman shift (MicroRaman LABRAM-1B, bước sóng laser 633 nm, công suất laser 6,25 mW và kính hiển vi soi Leica NPLAN L50x/0.50 BD); phương pháp hiển vi điện tử quét (SEM, HITACHI TM4000 Plus); phương pháp phổ hấp thụ UV-Vis rắn (DRUV-Vis, Jasco V-750) với sử dụng quả cầu tích hợp 60 mm (ISV-922), tốc độ quét 200 nm/min; phương pháp phổ hấp thụ UV-Vis lỏng (Agilent 8453).

Đánh giá hoạt chất quang xúc tác phân hủy chất màu xanh metylen

Đánh giá hoạt tính xúc tác quang của các mẫu bột chế tạo C₃N₄, Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄ bằng phản ứng phân hủy chất màu xanh metylen (viết tắt là MB với công thức phân tử là C₁₆H₁₈ClN₃S.3H₂O). Thực nghiệm tiến hành chuẩn bị 4 cốc thủy tinh pyrex dung tích 100 mL. Trong đó, mỗi cốc thủy tinh được lấy: 0,02g chất xúc tác tương ứng là các mẫu bột vật liệu (C₃N₄, Cu₂O, Cu₂O-3%C₃N₄, Cu₂O-5%C₃N₄); 50mL dung dich chất màu xanh metylen (MB); H₂O₂ được bổ sung thêm 0,028 gL⁻¹. Các dung dịch hỗn hợp này được khuấy tối 30 phút để đạt cân bằng hấp phụ-nhả hấp. Sau đó, dung dịch hỗn hợp được chiếu sáng bởi đèn Osram 220V-250W (đèn dân dụng phát nguồn ánh sáng nhìn thấy có bước sóng $\lambda \ge 400$ nm). Sau mỗi khoảng thời gian chiếu sáng 10 phút dung dịch được trích ra 2 mL, đem li tâm để lọc lấy dung dịch trong và đem đo đô hấp thụ quang trên máy quang phổ Agilent 8453 (ở bước sóng cực đại của dung dịch MB là λ = 660 nm). Hiệu suất xúc tác quang phân hủy chất màu MB được xác định theo công thức (1):

 $H(\%) = (C_0-C)/C_0 \times 100(\%)$ (1)

Trong đó: C₀, C lần lượt là nồng độ của chất phản ứng lúc ban đầu và ở thời điểm t (mg/L).

Kết quả và thảo luận

Hình 2: Giản đồ XRD của mẫu vật liệu bột chế tạo C₃N₄

Kết quả phổ nhiễu xạ tia X của mẫu vật liệu bột chế tạo C_3N_4 được thể hiện trên Hình 2. Kết quả phổ nhiễu xạ tia X của các mẫu vật liệu bột chế tạo Cu_2O , Cu_2O - $3\%C_3N_4$ và Cu_2O - $5\%C_3N_4$ được thể hiện trên Hình 3. Trên giản đồ nhiễu xạ XRD Hình 2 cho thấy vật liệu C_3N_4 có xuất hiện pic ở các vị trí góc nhiễu xạ $2\theta \approx$ 13,2°, 27,3° tương ứng với họ mặt mạng (001), (002) của tinh thể C_3N_4 [6-9]. Trên phổ XRD Hình 3 cho thấy, các mẫu vật liệu chế tạo Cu_2O , Cu_2O - $3\%C_3N_4$ đều xuất hiện các đỉnh phổ ở vị trí góc nhiễu

xạ 20≈ 29,6°, 36,4°, 42,5° và 62° tương ứng với các họ mặt mạng (110), (111), (200) và (220) của tinh thể oxit đồng I (Cu₂O) (theo JCPDS 05-0667) [1-5]. Thêm nữa là, trên phổ XRD của các mẫu Cu₂O pha tạp C₃N₄ còn xuất hiện thêm 1 pic được nhú lên ở vị trí góc nhiễu xạ 20≈27,2° tương ứng với họ mặt mạng (002) của pha tinh thể C₃N₄ [6-9]. Ngoài ra, trên hình phổ XRD không thấy có pic đặc trưng của Cu hay CuO. Các pic nhiễu xạ đặc trưng này của các mẫu đều được mở rộng. Điều này cho xác định là mẫu bột vật liệu C₃N₄, Cu₂O chế tạo đạt được đều là đơn pha. các mẫu vật liệu bộtpha tạp Cu₂O-3%C₃N₄, Cu₂O-5%C₃N₄ đã có đủ 2 pha tổ hợp là Cu₂O và C₃N₄; vật liệu chế tạo đạt được cố nano-mét.

Hình 3: Giản đồ XRD của các mẫu vật liệu bột chế tạo Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄

Kết quả phổ Raman shift

Hình 4: Phổ Raman shift của mẫu vật liệu bột chế tạo Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄

Kết quả phổ Raman shift của các mẫu vật liệu bột chế tạo Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄ được thể hiện trên Hình 4. Trên phổ Raman cho thấy, các mẫu https://doi.org/10.51316/jca.2021.052 xuất hiện các đỉnh phổ dao động ở các vị trí số sóng 105 cm⁻¹, 148 cm⁻¹, 220 cm⁻¹ và 640 cm⁻¹, các vị trí số sóng này đều tương ứng với số sóng dao động của mẫu Cu₂O [3-4]. Điều này cho thấy các mẫu chế tạo đều đạt được kết tinh tinh thể của oxit đồng I (Cu₂O). Các mẫu Cu₂O pha tạp C₃N₄ cho thấy là có các pic dao động sóng bị suy giảm đi hơn so với mẫu Cu₂O không pha tạp. Điều này cho thấy là đã có sự tác động của pha tạp C₃N₄ đến cấu trúc của vật liệu Cu₂O. Kết quả khảo sát Raman shift cho thấy là phù hợp với kết quả khảo sát nhiễu xạ tia X ở phần 3.1.

Hình thái học bề mặt vật liệu

Hình thái học bề mặt vật liệu được xác định bằng chụp hiển vi điện tử quét (SEM). Hình 5 là ảnh SEM của các mẫu vật liệu bột C₃N₄, Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄. Trên ảnh SEM quan sát thấy: mẫu C₃N₄ có bề mặt ở dạng các đám bông được xếp chồng lên nhau, độ xốp cao, với chiều dài mỗi đám bông cỡ khoảng vài trăm nm [8,9]; mẫu Cu₂O có các hạt tinh thể hình bát diện (octahedra) với kích thước hạt ~200-300 nm, sự phân bố của các hạt là đồng đều trên bề mặt mẫu; Mẫu Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄ cũng vẫn có các hạt tinh thể octahedra, các hạt có sự sắp xếp khít nhau hơn so với mẫu Cu₂O không pha tạp và có vẻ như được lấp đầy các khoảng trống bởi những đám bông, xốp của C₃N₄, với kích thước hạt tinh thể octahedra cỡ 300-400 nm [1,9].

Hình 5: Ảnh SEM của mẫu vật liệu bột chế tạo C₃N₄, Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄

Kết quả phổ hấp thụ UV-vis rắn

Hình 6 là phổ hấp thụ UV-vis rắn của các mẫu vật liệu bột chế tạo C₃N₄, Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄. Trên hình phổ hấp thụ UV-vis cho thấy, mẫu vật liệu C₃N₄ chế tạo có bờ hấp thụ ở vùng bước sóng $\lambda \approx 450$ nm; mẫu vật liệu Cu₂O có bờ hấp thụ mở rộng nhiều hơn trong vùng ánh sáng nhìn thấy với bước sóng $\lambda \approx 700-900$ nm; mẫu vật liệu Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄ có bờ hấp thụ mở rộng trong vùng ánh sáng nhìn thấy với bước sóng $\lambda \approx 680$ nm, nằm trung gian giữa vùng hấp thụ ánh sáng của hai mẫu C₃N₄ và Cu₂O. Điều này cho thấy đã có sự tác động của yếu tố pha tạp C₃N₄ đến vật liệu Cu₂O, cụ thể là làm thay đổi độ mở rộng của bờ hấp thụ sóng ánh sáng của vật liệu Cu₂O pha tạp C₃N₄ nằm trong khoảng giữa của độ hấp thụ sóng ánh sáng của hai vật liệu đơn pha C₃N₄ và Cu₂O.

Hình 6: Phổ hấp thụ UV-Vis rắn của các mẫu vật liệu bột C₃N₄, Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄

Hình 7: Đồ thị biểu thị mối quan hệ của $(\alpha hv)^2$ và hv theo phương trình Taus của các mẫu vật liệu chế tạo

Theo phổ hấp thụ của các mẫu vật liệu chế tạo C_3N_4 , Cu_2O , $Cu_2O-3\%C_3N_4$ và $Cu_2O-5\%C_3N_4$ cho thấy là đều nằm trong vùng ánh sáng nhìn thấy $\lambda \approx 450-900$ nm. Điều này cho khả năng quang xúc tác của các mẫu vật liệu này đều xảy ra được trong vùng ánh sáng nhìn thấy. Tuy nhiên, đối với vật liệu Cu_2O pha tạp C_3N_4 thì có khả năng bẫy điện tích, làm giảm tốc độ tái kết hợp

của điện tử và lỗ trống quang sinh, dẫn đến sẽ làm tăng hiệu quả quang xúc tác của vật liệu trong vùng ánh sáng nhìn thấy hơn so với vật liệu không pha tạp Cu₂O và C₃N₄ [6-9]. Độ rộng vùng cấm quang của các mẫu vật liệu được xác định theo phương pháp Tauc, thể hiện mối liên hệ giữa phổ hấp thụ và năng lượng theo phương trình: $(\alpha hv)^2 = B(hv - Eg)$ (2) [2,8]. Trong đó, $\alpha = 4\pi k/\lambda$ là hệ số phụ thuộc và hệ số hấp thụ k và bước sóng λ , B là hằng số. Độ rộng vùng cấm guang Eg được xác định là giao điểm của đường tiếp tuyến với đoạn tuyến tính nhất của các đường đồ thị $(\alpha hv)^2$ hv với trục hv. Hình 7 là đồ thị biểu thị mối quan hệ của $(\alpha hv)^2$ và hv dựa theo phương trình Taus của các mẫu vật liệu C₃N₄, Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄. Giá trị Eg của các mẫu C₃N₄, Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄ được xác định lần lượt là: 2,75 eV, 2,2 eV, 2,5eV và 2,6 eV.

Khảo sát hoạt tính quang xúc tác phân hủy chất màu xanh metylen

Hình 8 là đồ thị biểu diễn khảo sát hiệu suất quang xúc tác phân hủy chất màu xanh metylen (MB) của các mẫu vật liệu bột C_3N_4 , Cu_2O , $Cu_2O-3\%C_3N_4$ và $Cu_2O-5\%C_3N_4$ (các mẫu quang xúc tác đều được bổ sung thêm lượng H_2O_2 0,028 gL⁻¹). Trên Hình 8 cho thấy, các mẫu khảo sát đều có hoạt tính quang xúc tác tốt cho phân hủy chất màu MB trong vùng ánh sáng nhìn thấy sau 30 phút chiếu ánh sáng nhìn thấy bởi chiếu đèn Osram 220V-250W.

Hình 8: Đồ thị hiệu suất quang xúc tác phân hủy chất màu MB dưới chiếu ánh sáng nhìn thấy của các mẫu

Mẫu Cu₂O-3%C₃N₄ đạt hiệu quả quang xúc tác cao nhất 100% phân hủy chất màu MB sau 30 phút chiếu sáng. Mẫu Cu₂O-5%C₃N₄ đạt hiệu quả quang xúc tác là 98,6% phân hủy chất màu MB. Mẫu Cu₂O và C₃N₄ đạt hiệu quả quang xúc tác phân hủy chất màu MB

thấp hơn so với hai mẫu Cu₂O pha tạp C₃N₄ ở trên, đạt được tương ứng là 98,2% và 98%. Nhận thấy, mẫu vật liệu Cu₂O pha tạp C₃N₄ đạt được hiệu quả quang xúc tác phân hủy chất màu MB cao hơn so với mẫu Cu₂O và C₃N₄ đơn pha. Điều này có thể được giả thích là do khả năng làm giảm tốc độ tái kết hợp của cặp điện tửlỗ trống quang sinh của vật liệu Cu₂O pha tạp C₃N₄ khi có chiếu sáng, dẫn tới việc làm tăng hiệu quả quang xúc tác của vật liệu Cu₂O pha tạp [6-9].

Kết luận

Đã chế tạo thành công mẫu vật liệu bột C₃N₄ theo phương pháp nung và các mẫu vật liêu bột nano Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄ theo phương pháp thủy nhiệt. Mẫu vật liệu C₃N₄ chế tạo được là đơn pha với cấu trúc dạng bông độ xốp cao, được tập hợp theo từng đám bông với chiều dài cỡ khoảng vài trăm nm. Mẫu vật liệu Cu₂O chế tạo được cũng ở dạng đơn pha có cấu trúc tinh thể hình bát diện (octahedra), kích thước hạt tinh thể cỡ ~200-300 nm. Mẫu Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄ chế tạo có cấu trúc tinh thể hình bát diện (octahedra) với các hạt tinh thể được sắp xếp khít nhau hơn so với mẫu Cu2O và được lấp đầy các khoảng trống bởi những đám bông, xốp của C₃N₄, với kích thước hạt tinh thể octahedra cỡ 300-400 nm. Các mẫu đều có phổ hấp thụ quang mở rộng trong vùng ánh sáng nhìn thấy. Mẫu vật liệu C₃N₄ chế tạo có bờ hấp thụ ở vùng bước sóng $\lambda \approx 450$ nm; mẫu vật liệu Cu₂O có bờ hấp thụ ở vùng bước sóng λ ≈ 700-900 nm; mẫu vật liệu Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄ có bờ hấp thụ ở vùng bước sóng $\lambda \approx 680$ nm, nằm trung gian giữa vùng hấp thụ ánh sáng của hai mẫu C₃N₄ và Cu₂O. Năng lượng vùng cấm quang Eg của các mẫu C3N4, Cu2O, Cu2O-3%C3N4 và Cu2O-5%C3N4 được xác định dựa trên phương trình Taus có giá trị lần lượt là: 2,75 eV, 2,4 eV, 2,5eV và 2,6 eV. Các mẫu C₃N₄, Cu₂O, Cu₂O-3%C₃N₄ và Cu₂O-5%C₃N₄ với sự bổ sung thêm H₂O₂ đều đạt hiệu quả quang xúc tác tốt trong vùng ánh sáng nhìn thấy. Hiệu quả quang xúc tác cao nhất đạt được ở mẫu Cu2O-3% C3N4 phân hủy 100% chất màu MB sau 30 phút chiếu sáng. Hiệu quả quang xúc tác thấp nhất đạt được ở hai mẫu không pha tạp Cu₂O và C₃N₄ phân hủy 98% chất màu MB.

Lời cảm ơn

Công trình này được thực hiện với sự hỗ trợ về kinh phí của đề tài cấp trường T2018-PC-233, Trường Đại học Bách Khoa Hà Nội.

Tài liệu tham khảo

- 1. M.A. Khan, M. Ullah, T. Igbal, H. Mahmood, A.A. Khan, M. Shafique, A. Majid, A. Ahmed, N.A. Khan, Nanosci. Nanotechnol. Res. 3(1) (2015) 16-22. https://10.12691/nnr-3-1-3
- 2. B.R. Kumara, B. Hymavathib, T.S. Rao, Mater. Today: Proc. 4 (2017) 3903-3910. www.sciencedirect.com
- 3. Y. Deng, A.D. Handoko, Y. Du, S. Xi, and B.S. Yeo, ACS Catal. 6 (2016) 2473-2481. https:// 10.1021/acscatal.6b00205
- 4. K. Kardarian, D. Nunes, P.M. Sberna, A. Ginsburg, D.A. Keller, J.V. Pinto, J. Deuermeier, A.Y. Anderson, A. Zaban, R. Martins, E. Fortunato, Sol. Energy Sol. Cells Mater. 147 (2016) 27-36.

https:// 10.1016/j.solmat.2015.11.041

- 5. P. He, X. Shen, H. Gao, J. Colloid Interface Sci. 284 (2005) 510-515. https://10.1016/j.jcis.2004.10.060
- 6. G. Dong, Y. Zhang, Q. Pan, J. Qiu, J. Photochem. Photobiol. C: Photochem. Rev. 20 (2014) 33-50. https:// 10.1016/j.jphotochemrev.2014.04.002
- 7. H. Yan, H. Yang, J. Alloys Comp. 509 (2011) L26-L29. https:// 10.1016/j.jallcom.2010.09.201
- 8. D.R. Paul, S. Gautam, P. Panchal, S.P. Nehra, P. Choud hary, and A. Sharma, Am. Chem. Soc. 5 (2020) 3828-3838. Omega https:// 10.1021/acsomega.9b02688
- 9. X. Yan, R. Xu, J. Guo, X. Cai, D. Chen, L. Huang, Y. Xiong, S. Tan, Mater. Res. Bulletin MRB 9051 (2016) 1-10. https:// 10.1016/j.materresbull.2016.12.009