

Vietnam Journal of Catalysis and Adsorption Tạp chí xúc tác và hấp phụ Việt Nam

http://chemeng.hust.edu.vn/jca/

Effect of Mn²⁺ dopants on the photocatalytic efficiency of MoS₂

Phan Thi Thuy Trang^{1*}, Truong Cong Duc¹, Truong Thanh Tam¹, Vo Vien^{1,2}, Nguyen Hong Lien^{3*}

^{1*}Faculty of Natural Science – Quy Nhon University

² Applied Research Institute for Science and Technology, Quy Nhon University

^{3*}School of Chemical Engineering – Hanoi University of Science and Technology

*Email: phanthithuytrang@qnu.edu.vn, lien.nguyenhong@hust.edu.vn

ARTICLE INFO

Received: 30/3/2020 Accepted: 30/6/2020

Keywords:

MoS₂, Mn doped MoS₂, Rhodamine B, photocatalytic degradation, visible light.

ABSTRACT

The Mn-doped MoS₂ (Mn-MoS₂) material is fabricated by a facile onestep calcination method. The Mn²⁺ content introduced into MoS₂ is ranged from 1 wt% to 7 wt%. The X-ray diffraction (XRD) and scanning electron microscopy SEM results suggest that the doping of Mn²⁺ does not alter the crystal structure and the morphology of MoS₂. However, it helps the Mn-doped MoS₂ to exhibit stronger visible light absorption and higher magnetism. Especially, in the RhB degradation under visible light irradiation, better photocatalytic performance of the as-prepared Mn-doped MoS₂ is observed compared to that of pure MoS₂.

Introduction

MoS₂ is a two-dimensional (2D) layer transition metal that is currently attracting the interest of many scientists because of its wide applicability in the field of photocatalytic degradation of organic dyes [1], hydrogen evolution [2], and photoelectrochemical cell [3]. However, the band gap of MoS₂ sheets is small (about 1.3 eV in bulks) so photon-generated electronhole pairs are rapidly recombined, leads to low photocatalytic efficiency. According to Sara et al [4] MB degradation efficiency over MoS₂ photocatalyst is only 20% with MoS₂ catalyst. Therefore, to improve the photocatalytic efficiency of materials, doping metal or nonmetal elements into MoS₂ 2D crystals is currently being extensively studied [5]. Doping can improve the intrinsic properties of metals as well as nonmetals, increasing the properties of 2D materials. The presence of doping elements can increase the band gap of MoS₂, thus enhances the separation of photongenerated electron-hole pairs and improve the photocatalytic activity in degradation of organic

compounds. Morever, magnetic properties are also improved, which increases the charge transfer capacity, thereby significantly improving the photocatalytic efficiency of the material [6].

There are many doping methods available, but the disadvantage is the complex of the process and high cost due to the use of precious metals [3, 7]. Therefore, this study aims to development of a simple method for synthesis MoS₂ material by one step. In this study, Mn was selected for doping into MoS₂ to increase the photocatalytic efficiency of the material due to its low cost and the ionic radius of 0.80 A° [8] similarity in compared to Mo^{4+} 0.79 A° of MoS_2 . There are many elements used for the MoS₂ doping process, but no published work on the inclusion of Mn doped in MoS₂ network to improve the photocatalytic efficiency of the materials. The results of this study can open up new research directions in the application of other transition metals on semiconductors, to fully exploit the properties of materials in many different applications, especially, the process of degradation persistent organic substances pollutes the environment.

Experimental

Synthetic materials

Materials, chemicals: materials and chemicals used for this study include $(NH_4)_6Mo_7O_{24}.4H_2O$, thiourea, $Mn(CH_3COO)_2.4H_2O$, ethanol and rhodamine B (China).

The Mn-MoS₂ material is synthesized by a simple calcination method. In a typical experiment, (NH₄)₆Mo₇O₂₄.4H₂O, (NH₂)₂CS, as the precusors, were dissolved in a solvent of water : ethanol (1:1. v/v) under vigorously stirring at room temperature for 30 minutes. A proper amount of Mn(CH₃COO)₂.4H₂O was added and continuously stirred for another 1h to obtain a homogeneous solution. The resulting solution was heated at 60°C under stirring to evaporate solvents, and then, a solid was obtained. This solid was well ground and calcinated at 650°C for 1 hour in N₂ gas. The obtained sample was labeled as Mn-MoS₂. For comparison, MoS₂ was also prepared in the same without procedure the addition of Mn(CH₃COO)₂.4H₂O.

Characterization of Materials

The synthetic material samples are analyzed to determine their structural characteristics by the methods such as: X-ray diffraction (XRD-Siemen D-500-Bruker), structural bonding by infrared spectrum (FT-IR– GX-PerkinElmer), Scanning electron microscope (SEM – SEM-JEOL-JSM 5410 LV), Energy-dispersive X-ray spectroscopy (EDX – Jeol 5419), Electron paramagnetic resonance (EPR - Bruker) and Visible ultraviolet diffuse reflection (UV-Vis DRS – Cary 5000, Varian).

Research on RhB decomposition photocatalytic process

Photocatalytic activities were evaluated through the photodegradation of RhB in aqueous solution under the visible light irradition. For the typical experiment, 0.1g of the photocatalyst was dispersed into a 400 ml RhB solution with a concentration of 20 mg/L under stirring at room temperature. Before irradition, the suspension was stirred in the dark for 2 hours to reach adsorption-desorption equilibrium of RhB the molecules on the surface of the photocatalyst before being illuminated by the compact light (60W-220V). After every interval of 30 minutes, 4 mL solution was taken out and centrifuged to remove the photocatalyst. The residual concentration of RhB as a function of investigated time was determined by recording its absorbance at 553 nm using a UV-Vis spectrometer. On the basis of comparison with the initial RhB concentration, the RhB conversion and the activity of the material were determined.

Results and Discussion

Investigate the effect of the Mn content on the structure of MoS_2

The results of crystal and structure characteristics of MoS_2 and $n\% Mn-MoS_2$ materials (with n = 1% Mn, 3% Mn, 5% Mn and 7% Mn) are shown on X-ray diffraction pattern in the Figure 1.

Fig 1: Effect of Mn content on crystal phase characteristics of Mn-doped samples (n% Mn-MoS₂, with n = 1% Mn, 3% Mn, 5% Mn and 7% Mn)

The results showed that in Mn-doped MoS₂ material samples, the presence of characteristic peaks of MoS₂ appeared at $2\theta = 14.1$; 33.6; 39.84 and 58.1°, respectively (002), (100), (103), and (110) are completely consistent with the 2H hexagonal phase of MoS₂ [9]. The peaks on the faces (100) and (110) were sharp, indicating very good crystallinity of the composites. Meanwhile, the peak in the face (002) of the n%Mn-MoS₂ samples flat and the intensity was much lower than that of the undoped MoS₂ sample, possibly due to the presence of Mn^{2+} ions in the MoS_2 network. Furthermore, with the addition of Mn, there are no remarkable changes in the XRD patterns and no addition peak indexed to MnS or to any other secondary phases can be identified, indicating that Mn^{2+} ions might be doped into the MoS_2 crystal or maybe the Mn²⁺ ions content used for the doping process are too low [10].

The chemical bonding characteristics in the structure of MoS_2 and $n\%Mn-MoS_2$ materials were shown on the FTIR spectra(Figure 2).

Fig 2: FT-IR spectra of MoS₂ and n%Mn-MoS₂

The results showed that the peaks around 528 cm⁻¹, 920 cm⁻¹ corresponded to Mo-S stretching vibrations [11,12], while the peak at 1119 cm⁻¹ was for S=O linkage [13] and the peak at 1250 cm⁻¹ atributed to C-O vibration [14] the vibration bands around 1632 and 3200-3500 cm⁻¹ could be ascribed to O-H streching of water adsorption on the surface of the material [15]. Because the amount of Mn doped is too small, the characteristic of the bonds are not shown in the Mn-MoS₂ samples (this was also shown in the XRD spectrum). To know the difference of Mn doped (Mn-MoS₂) and undoped (MoS₂) is clearly shown in EPR spectrum.

Meanwhile, the light absorption of the samples MoS_2 and $n%Mn-MoS_2$ changed depending on the presence of Mn as observed in the Figure 3.

Fig 3: UV-Vis DRS spectra of MoS₂ and n%Mn-MoS₂

The results showed that the adsorption edges of MoS_2 and $n\%Mn-MoS_2$ extended to 800 nm, suggesting that those materials could be photocatalytic active in the visible light region. The light absorption intensity of the $n\%Mn-MoS_2$ samples was much stronger than that of the undoped MoS_2 samples. This indicated that the doping of Mn^{2+} ions into MoS_2 networks might improve the photocatalytic activity of the material during RhB dye degradation under the visible light irradition.

The structural morphology of MoS₂ and 3%Mn-MoS₂ samples was described by SEM and EDX images as presented in Figure 4.

Fig 4: SEM images of MoS_2 (a) and $3\%Mn-MoS_2$ (b); EDX spectra of MoS_2 (c) and $3\%Mn-MoS_2$ (d)

The SEM image of MoS_2 depicted typical wrinkled sheet. After doping Mn into MoS_2 , the structure of the wrinkled was remained. This might be due to the Mn^{2+} ions amount use for doping too small, leading to no structural change of the material could be observed. In addition, EDX results also showed the presence of Mo and S elements at the ratio of 1: 2 suitable for the MoS_2 linkage in the material (Figure 4c) and Mn, Mo and S elements in Mn-MoS₂ sample (Figure 4d). This again confirmed that we have successfully synthesized the Mn-MoS₂ material.

Besides, EPR spectroscopy was used to measure the effect of doped Mn on magnetic properties of MoS_2 materials. The results of EPR spectroscopy analysis on MoS_2 and $3\%Mn-MoS_2$ samples are shown in the Figure 5.

Figure 5 showed that the peak of undoped MoS₂ sample was low, while it was much stronger the Mn²⁺ doped MoS₂, demonstrate that the material is magnetic. Moreover, EPR spectra of Mn-MoS₂ sample showed characteristic hyperfine lines of Mn²⁺ (I = 5/2), showing that Mn²⁺ ion was actually doped into MoS₂ network. On the other hand, based on EPR spectroscopy, the type of defects shown in the sample's nanoparticles can be determined by the coefficient g, calculated by the formula: g = hv/BH [16]. The value of the coefficient g of the sample Mn-MoS₂ (g = 2.00) is lower than that of the simple MoS₂ sample (g = 2.003), indicating the presence of Mn²⁺ ions in the MoS₂ crystal lattice.

Fig 5: EPR spectroscopy of MoS₂ and 3%Mn-MoS₂

Investigation of the photocatalytic activity of the material

Before investigating the catalytic activity, MoS_2 and $Mn-MoS_2$ materials were tested for determination of RhB adsorption equilibrium. The dependence of the adsorption capacity of MoS_2 and $Mn-MoS_2$ materials for RhB on time are shown in Figure 6.

Fig 6: RhB adsorption capacity of MoS₂ and n%Mn-MoS₂ samples

From the Figure 6, it can be seen that the time needed for reach adsorption equilibrium is 2 hours for all tested materials. The n%Mn-MoS₂ samples had better adsorption capacity than the undoped MoS₂ sample.

Thus, the catalytic investigation of the material will be conducted in visible light after 2 hours of adsorption in the dark. Research results of changing RhB concentration according to illumination time are presented in Figure 7.

Fig 7: Photocatalytic efficiency MoS₂ and n%Mn-MoS₂ samples in RhB degradation

From the Figure 7, it could be observed that, after 240 minutes of photodegradation, the concentration of RhB decreased by about 25,9% in the presence of MoS_2 ; significantly reduced by $n\%Mn-MoS_2$ corresponding to n = 1; 3; 5 and 7% is 33.3; 40.9; 37.4 and 31.6%, respectively.

Thus, the single MoS₂ showed the lowest activity with RhB conversion reaching 25.9% after 4 hours. This is completely consistent with the disadvantage of MoS₂ that it has small band gap energy, so recombination of the rapid photo-generated electron-hole pairs leads to a decrease in photocatalytic activity. Meanwhile, the 3%Mn-MoS₂ doped sample showed the highest photocatalytic decomposition results with an efficiency of 40.9% after 4 hours of illumination. This result is consistent with observations from sample characteristics and the role of Mn metal when dope in the sample increases the charge transfer capacity as shown in the EPR spectrum (Figure 5). This increases the catalytic sites which should lead to improved photocatalytic efficiency of the material. However, photocatalytic activity decrease when n at higher values of 5 and 7%. The reason may due to that the more modified dosage of Mn could cause trapping centers in the material structure, which increases the

recombination photon-generated electron - hole pairs [17].

The photocatalytic kinetics and the rate constant of the reaction are one of the important parameters to evaluate the RhB photodegradation process. The Langmuir - Hinshelwood model was applied to study the process dynamics and the results showed in Figure 8 and Table 1.

Fig 8: Kinetic model Langmuir - Hinshelwood applied to MoS₂ and n%Mn-MoS₂

Table 1: Data on the Langmuir – Hinshelwood kinetic
model applied to MoS_2 and $n\%Mn-MoS_2$

Samples	The rate constant k (in unit of min ⁻¹)	Correlation coefficients R ²
MoS ₂	0.00121	0.994
1%Mn-MoS ₂	0.00172	0.991
3%Mn-MoS₂	0.00221	0.994
5%Mn-MoS ₂	0.00195	0.990
7%Mn-MoS ₂	0.00165	0.991

From the results in Figure 8 and Table 1 showed that the Langmuir - Hinshelwood kinetic model is suitable for RhB photodegradation catalytic samples with correlation coefficient $R^2 \ge 0.99$. Calculation of the rate constant showing 3%Mn-MoS₂ material gives the fastest degradation rate with the rate constant k = 0.00221.

Conclusions

Successfully synthesized $Mn-MoS_2$ material by simple calcination method. With the amount of Mn doped into MoS_2 makes the material magnetic, increasing the charge transfer capacity, leading to improved photocatalytic activity of the material. In which, 3% Mn-

MoS₂ sample had the highest efficiency of 40.9% during RhB degradation after 4 hours of illumination under visible light irradition. However, the photocatalytic improvement efficiency of Mn-MoS₂ material is not high. Therefore, the next research direction will incorporate a 2D material with a large specific surface area (reduced graphene oxide - rGO) in the composite form to significantly improve the photocatalytic efficiency of the material for the RhB degradation process in wastewater.

Acknowledgements

This work was done in the framework of the project 9.52.03.01 at the Natural Science Department Laboratory (Quy Nhon University) and Department of Petrochemical Organic Technology (Hanoi University of Science and Technology).

References

- Zhenyin Hai, Jiangong Du, Mohammad Karbalaei Akbari, Chenyang Xue, Hongyan Xu & Serge Zhuiykov, Carbon-doped MoS₂ nanosheets photocatalysts for efficient degradation of methyl orange, lonics, 23 (2017) 1921-1925. https://doi.org/10.1007/s11581-017-2144-4
- Zhou W, Yin Z, Du Y et al., Synthesis of few-layer MoS₂ nanosheet-coated TiO₂ nanobelt heterostructures for enhanced photocatalytic activities, Small 9 (2013) 140–147. https://doi.org/10.1002/smll.201201161
- Yin Z., Chen B., Bosman M., Cao X., Chen J., Zheng B., Zhang H., Au nanoparticle-modified MoS₂ nanosheet - based photoelectrochemical cells for water splitting, Small 10 (2014) 3537–3543. https://doi.org/10.1002/smll.201400124
- Sara Cravanzola, Federico Cesano, Giuliana Magnacca, Adriano Zecchina, Domenica Scarano, Designing rGO/MoS₂ hybrid nanostructures for photocatalytic applications, J. Name . (2013) 1-3. https://doi.org/10.1039/C6RA08633K
- Wang Y, Ou JZ, Chrimes AF et al., Plasmon resonances of highly doped two-dimensional MoS₂, Nano Lett 15 (2015) 883–890. https://doi.org/10.1021/nl503563g
- R. Nasser, H. Elhouichet and M. Férid, Effect of Mn doping on structural, optical and photocatalytic behaviors of hydrothermal Zn1-xMnxS nanocrystals, Appl. Surf. Sci. 351 (2015) 1122 – 1130. https://doi.org/10.1016/j.apsusc.2015.06.096
- 7. Ren X., Ma Q., Fan H., Pang L., Zhang Y., Yao Y., Ren X., Liu S., A Se-doped MoS₂ nanosheet for