Synthesis of hybrid silver–doped graphene oxide material as a superior antibacterial performance and cadmium ion sensor

Linh Nguyen Thi Thuy, Cong Che Quang, Dat Nguyen Minh, Diep Tran Chau, Tinh Ninh Thi, Thinh Doan Ba, Nam Nguyen Thanh Hoai, Khang Chau Gia, Lieu Le Thi Bich, Oanh Doan Thi Yen, Nam Hoang Minh, Phong Mai Thanh, Hieu Nguyen Huu

Abstract


In this study, in-situ method was applied for synthesizing silver-doped graphene oxide (Ag/GO). The material was extensively characterized by X-ray diffraction, Transmission electron microscopy, Scanning electron microscope, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and UV-Vis spectroscopy. The characterization analysis results demonstrated that Ag/GO nanocomposite was successfully synthesized, revealing the formation of AgNPs on GO sheets with an average diameter ranging from 15 to 30 nm. The Ag/GO nanocomposite exhibited excellent antibacterial effect against three strains of  Gram-negative (Escherichia coli, Pseudomonas aeruginosa), and Gram-positive (Staphylococcus aureus) bacteria using the zone inhibition method. Moreover, the Ag/GO nanocomposite was also useful for the detection of Cd2+ ions in an aqueous solution with a detection limit of 10.15 mg/L. This study developed an eco-friendly route for the fabrication of Ag/GO nanocomposite using a non-toxic procedure that could be a great potential for biomedical-related applications and colorimetric detection of heavy metal present in water.

Keywords


Silver–doped graphene oxide; antibacterial; cadmium ion

Full Text:

PDF

References


D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, and Y. Yin, Efficient synthesis of silver-reduced graphene oxide composites with prolonged antibacterial effects Ceram. Int. 42 (2016) 9769–9778. https://doi.org/10.1016/j.ceramint.2016.03.069

D. Vilela, M. C. González, and A. Escarpa, Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review Anal. Chim. Acta 751 (2012) 24–43. https://doi.org/10.1016/j.aca.2012.08.043

S. Liu, T. Helen Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, and Y. Chen, Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress ACS Nano 5 (2011) 6971–6980. https://doi.org/10.1021/nn202451x

S. K. Kailasa, J. R. Koduru, M. L. Desai, T. J. Park, R. K. Singhal, and H. Basu, Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples TrAC Trends Anal. Chem. 105 (2018) 106–120. https://doi.org/10.1016/j.trac.2018.05.004

A. Virgilio, A. B. S. Silva, A. R. A. Nogueira, J. A. Nóbrega, and G. L. Donati, Calculating limits of detection and defining working ranges for multi-signal calibration methods J. Anal. At. Spectrom. 35 (2020) 1614–1620. https://doi.org/10.1039/D0JA00212G

S. S. I. Abdalla, H. Katas, J. Y. Chan, P. Ganasan, F. Azmi, and M. F. M. Busra, Antimicrobial activity of multifaceted lactoferrin or graphene oxide functionalized silver nanocomposites biosynthesized using mushroom waste and chitosan RSC Adv. 10 (2020) 4969–4983. https://doi.org/10.1039/C9RA08680C

N. Minh Dat, V. N. P. Linh, N. T. L. Phuong, L. N. Quan, N. T. Huong, L. A. Huy, H. M. Nam, M. Thanh Phong, and N. H. Hieu, The effects of concentration, contact time, and pH value on antibacterial activity of silver nanoparticles decorated reduced graphene oxide Mater. Technol. 34 (2019) 792–799. https://doi.org/10.1080/10667857.2019.1630898

C. Castiglioni and M. M. S. Tommasini, Raman spectroscopy of disordered and nano-structured carbon materials: the molecular approach (2007).

N. X. Dinh, N. Van Cuong, N. Van Quy, T. Q. Huy, K. Mølhave, and A.-T. Le, Graphene oxide/silver nanohybrid as multi-functional material for highly efficient bacterial disinfection and detection of organic dye J. Electron. Mater. 45 (2016) 5321–5333. https://doi.org/10.1007/s11664-016-4734-8

L. C. Yun’an Qing, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu, and Y. Qin, Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies Int. J. Nanomedicine 13 (2018) 3311. https://doi.org/10.2147/IJN.S165125

N. Minh Dat, V. N. P. Linh, L. A. Huy, N. T. Huong, T. H. Tu, N. T. L. Phuong, H. M. Nam, M. Thanh Phong, and N. H. Hieu, Fabrication and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus of silver nanoparticle decorated reduced graphene oxide nanocomposites Mater. Technol. 34 (2019) 369–375. https://doi.org/10.1080/10667857.2019.1575555

V. Palmieri and M. Papi, Can graphene take part in the fight against COVID-19? Nano Today 33 (2020) 100883. https://doi.org/10.1016/j.nantod.2020.100883

N. Malanovic and K. Lohner, Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides Biochim. Biophys. Acta (BBA)-Biomembranes 1858 (2016) 936–946. https://doi.org/10.1016/j.bbamem.2015.11.004

N. M. Dat, T. H. Quan, D. M. Nguyet, T. N. M. Anh, D. B. Thinh, T. C. Diep, L. A. Huy, L. T. Tai, N. D. Hai, P. T. Khang, H. M. Nam, M. T. Phong, and N. H. Hieu, Hybrid graphene oxide-immobilized silver nanocomposite with optimal fabrication route and multifunctional application Appl. Surf. Sci. 551 (2021) 149434. https://doi.org/10.1016/j.apsusc.2021.149434

K. Arora, Recent Biosensing Applications of Graphene‐Based Nanomaterials Handb. Graphene, Vol. 6 Biosens. Adv. Sensors (2019) 297.

N. Karki, H. Tiwari, C. Tewari, A. Rana, N. Pandey, S. Basak, and N. G. Sahoo, Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications J. Mater. Chem. B 8 (2020) 8116–8148. https://doi.org/10.1039/D0TB01149E

J. Du, X. Hu, G. Zhang, X. Wu, and D. Gong, Colorimetric detection of cadmium in water using L-cysteine functionalized gold–silver nanoparticles Anal. Lett. 51 (2018) 2906–2919. https://doi.org/10.1080/00032719.2018.1455103

F. Tanvir, A. Yaqub, S. Tanvir, R. An, and W. A. Anderson, Colorimetric detection of mercury ions in water with capped silver nanoprisms Materials (Basel). 12 (2019) 1533. https://doi.org/10.3390/ma12091533.

M. L. Firdaus, I. Fitriani, S. Wyantuti, Y. W. Hartati, R. Khaydarov, J. A. Mcalister, H. Obata, and T. Gamo, Colorimetric detection of mercury (II) ion in aqueous solution using silver nanoparticles Anal. Sci. 33 (2017) 831–837. https://doi.org/10.2116/analsci.33.831

S. Palisoc, E. Lee, M. Natividad, and L. Racines, Silver nanoparticle modified graphene paste electrode for the electrochemical detection of lead, cadmium and copper Int. J. Electrochem. Sci. 13 (2018) 8854. https://doi.org/10.20964/2018.09.03




DOI: https://doi.org/10.51316/jca.2021.119

Refbacks

  • There are currently no refbacks.




*******

Index: Google ScholarCrossref

---------

Vietnam Journal of Catalysis and Adsorption

Address: Room 302  |  C4-5  |  Hanoi University of Science and Technology. 1 Dai Co Viet, Hanoi.

Tel.: ‎‎‎+84. 967.117.098 (Dr. Phượng)   Email: editor@jca.edu.vn   FB: JCA.VNACA